Limits on Kaluza-Klein Gravitons in Warped Extra Dimensions INSPIRE search

This section places limits on the mass of the first Kaluza-Klein (KK) excitation of the graviton in the warped extra dimension model of Randall and Sundrum. Bounds in parenthesis assume Standard Model fields propagate in the bulk. Experimental bounds depend strongly on the warp parameter, $\mathit k$. See the ``Extra Dimensions'' review for a full discussion.

Here we list limits for the value of the warp parameter $\mathit k/{{\overline{\mathit M}}_{{P}}}$ = 0.1.

VALUE (TeV) CL% DOCUMENT ID TECN  COMMENT
$\bf{> 4.1}$ 95 1
AABOUD
2017AP
ATLS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}}$
• • • We do not use the following data for averages, fits, limits, etc. • • •
2
SIRUNYAN
2018F
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit h}}{{\mathit h}}$
$> 3.11$ 95 3
KHACHATRYAN
2017T
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ , ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$
$> 1.9$ 95 4
KHACHATRYAN
2017W
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit j}}{{\mathit j}}$
5
SIRUNYAN
2017AK
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit W}}{{\mathit W}}$ , ${{\mathit Z}}{{\mathit Z}}$
6
AABOUD
2016AE
ATLS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit W}}{{\mathit W}}$ , ${{\mathit Z}}{{\mathit Z}}$
7
AABOUD
2016H
ATLS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}}$
8
AABOUD
2016I
ATLS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit h}}{{\mathit h}}$
9
AAD
2016R
ATLS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit W}}{{\mathit W}}$ , ${{\mathit Z}}{{\mathit Z}}$
10
KHACHATRYAN
2016BQ
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit h}}{{\mathit h}}$
$>3.3$ 95 11
KHACHATRYAN
2016M
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}}$
$>2.66$ 95 12
AAD
2015AD
ATLS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}}$
13
AAD
2015AU
ATLS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit Z}}{{\mathit Z}}$
14
AAD
2015AZ
ATLS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit W}}{{\mathit W}}$
15
AAD
2015BK
ATLS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit h}}{{\mathit h}}$
16
AAD
2015CT
ATLS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit W}}{{\mathit W}}$ , ${{\mathit Z}}{{\mathit Z}}$
$> 2.73$ 95 17
KHACHATRYAN
2015AE
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ , ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$
18
KHACHATRYAN
2015R
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit h}}{{\mathit h}}$
$> 2.68$ 95 19
AAD
2014V
ATLS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ , ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$
20
KHACHATRYAN
2014A
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit W}}{{\mathit W}}$ , ${{\mathit Z}}{{\mathit Z}}$ , ${{\mathit W}}{{\mathit Z}}$
$\text{>1.23 (>0.84)}$ 95 21
AAD
2013A
ATLS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit W}}{{\mathit W}}$
$\text{>0.94 (>0.71)}$ 95 22
AAD
2013AO
ATLS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit W}}{{\mathit W}}$
$> 2.23$ 95 23
AAD
2013AS
ATLS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}}$ , ${{\mathit e}^{+}}{{\mathit e}^{-}}$ , ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$
$> 2.39$ 95 24
CHATRCHYAN
2013AF
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ , ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$
25
CHATRCHYAN
2013U
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit Z}}{{\mathit Z}}$
$> 0.845$ 95 26
AAD
2012AD
ATLS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit Z}}{{\mathit Z}}$
$> 2.16$ 95 27
AAD
2012CC
ATLS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit \ell}}{{\overline{\mathit \ell}}}$
$> 1.95$ 95 28
AAD
2012Y
ATLS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}}$ , ${{\mathit e}^{+}}{{\mathit e}^{-}}$ , ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$
29
AALTONEN
2012V
CDF ${{\mathit p}}$ ${{\overline{\mathit p}}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit Z}}{{\mathit Z}}$
30
BAAK
2012
RVUE Electroweak
$> 1.84$ 95 31
CHATRCHYAN
2012R
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}}$
$> 1.63$ 95 32
AAD
2011AD
ATLS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit \ell}}{{\overline{\mathit \ell}}}$
33
AALTONEN
2011G
CDF ${{\mathit p}}$ ${{\overline{\mathit p}}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit Z}}{{\mathit Z}}$
$> 1.058$ 95 34
AALTONEN
2011R
CDF ${{\mathit p}}$ ${{\overline{\mathit p}}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ , ${{\mathit \gamma}}{{\mathit \gamma}}$
$> 0.754$ 95 35
ABAZOV
2011H
D0 ${{\mathit p}}$ ${{\overline{\mathit p}}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit W}}{{\mathit W}}$
$> 1.079$ 95 36
CHATRCHYAN
2011
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit \ell}}{{\overline{\mathit \ell}}}$
$> 0.607$ 37
AALTONEN
2010N
CDF ${{\mathit p}}$ ${{\overline{\mathit p}}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit W}}{{\mathit W}}$
$> 1.05$ 38
ABAZOV
2010F
D0 ${{\mathit p}}$ ${{\overline{\mathit p}}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ , ${{\mathit \gamma}}{{\mathit \gamma}}$
39
AALTONEN
2008S
CDF ${{\mathit p}}$ ${{\overline{\mathit p}}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit Z}}{{\mathit Z}}$
$> 0.90$ 40
ABAZOV
2008J
D0 ${{\mathit p}}$ ${{\overline{\mathit p}}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ , ${{\mathit \gamma}}{{\mathit \gamma}}$
41
AALTONEN
2007G
CDF ${{\mathit p}}$ ${{\overline{\mathit p}}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}}$
$> 0.889$ 42
AALTONEN
2007H
CDF ${{\mathit p}}$ ${{\overline{\mathit p}}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit e}}{{\overline{\mathit e}}}$
$> 0.785$ 43
ABAZOV
2005N
D0 ${{\mathit p}}$ ${{\overline{\mathit p}}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit \ell}}{{\mathit \ell}}$ , ${{\mathit \gamma}}{{\mathit \gamma}}$
$> 0.71$ 44
ABULENCIA
2005A
CDF ${{\mathit p}}$ ${{\overline{\mathit p}}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit \ell}}{{\overline{\mathit \ell}}}$
1  AABOUD 2017AP use 36.7 fb${}^{-1}$ of data from ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV in the diphoton channel to place a lower limit on the mass of the lightest KK graviton.
2  SIRUNYAN 2018F use 35.9 fb${}^{-1}$ of data from ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV to search for Higgs boson pair production in the ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit \ell}}{{\mathit \nu}}{{\mathit \ell}}{{\mathit \nu}}$ final state. See their Figure 7 for limits on the cross section times branching fraction as a function of the KK graviton mass with a warp parameter value $\mathit k/{{\overline{\mathit M}}_{{P}}}$ = 0.1.
3  KHACHATRYAN 2017T use 2.7 (2.9) fb${}^{-1}$ of data from ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV in the dielectron (dimuon) channel. This 13 TeV data is combined with 20 fb${}^{-1}$ of a previously analyzed set of 8 TeV data to place a lower bound on the mass of the lightest KK graviton. See their paper for the limit with warp parameter value $\mathit k/{{\overline{\mathit M}}_{{P}}}$ = 0.01.
4  KHACHATRYAN 2017W use 12.9 fb${}^{-1}$ of data from ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV to place a lower bound on the mass of the lightest KK graviton. (The quoted bound is for a warp parameter value of $\mathit k/{{\overline{\mathit M}}_{{P}}}$ = 0.1, although it was not disclosed in the publication.)
5  SIRUNYAN 2017AK use 19.7 fb${}^{-1}$ and up to 2.7 fb${}^{-1}$ of data from ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV and 13 TeV, respectively, to place limits on the production cross section of a KK graviton resonance. See their Figure 3 for exclusion limits on the signal strength for $\mathit k/{{\overline{\mathit M}}_{{P}}}$ = 0.5 and a mass range of 0.6 to 4.0 TeV .
6  AABOUD 2016AE use 3.2 fb${}^{-1}$ of data from ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV to place a lower bound on the mass of the lightest KK graviton. See their Figure 8 for the limit on the KK graviton mass as a function of the cross section times branching fraction for $\mathit k/{{\overline{\mathit M}}_{{P}}}$ = 1.
7  AABOUD 2016H use 3.2 fb${}^{-1}$ of data from ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV in the diphoton channel to place a lower limit on the mass of the lightest KK graviton. See their Figure 11 for limits on the cross section times branching fraction as a function of the graviton mass with warp parameter values $\mathit k/{{\overline{\mathit M}}_{{P}}}$ between 0.01 and 0.3.
8  AABOUD 2016I use 3.2 fb${}^{-1}$ of data from ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV to search for Higgs boson pair production in the ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit b}}{{\overline{\mathit b}}}$ final state. See their Figure 10 for limits on the cross section times branching fraction as a function of the KK graviton mass with warp parameter values $\mathit k/{{\overline{\mathit M}}_{{P}}}$ = 1.0 and 2.0.
9  AAD 2016R use 20.3 fb${}^{-1}$ of data from ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV to place a lower bound on the mass of the lightest KK graviton. See their Figure 4 for the limit on the KK graviton mass as a function of the cross section times branching fraction.
10  KHACHATRYAN 2016BQ use 19.7 fb${}^{-1}$ of data from ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV to search for Higgs boson pair production in the ${{\mathit \gamma}}{{\mathit \gamma}}{{\mathit b}}{{\overline{\mathit b}}}$ final state. See their Figure 9 for limits on the cross section times branching fraction as a function of the KK graviton mass with a warp parameter value $\mathit k/{{\overline{\mathit M}}_{{P}}}$ = 0.2.
11  KHACHATRYAN 2016M use 19.7 fb${}^{-1}$ and 3.3 fb${}^{-1}$ of data from ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV and 13 TeV, respectively, in the diphoton channel to place a lower limit on the mass of the lightest KK graviton. See their paper for limits with other warp parameter values $\mathit k/{{\overline{\mathit M}}_{{P}}}$ = 0.01 and 0.2.
12  AAD 2015AD use 20.3 fb${}^{-1}$ of data from ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV in the diphoton channel to place a lower limit on the mass of the lightest KK graviton. See their Table IV for limits with warp parameter values $\mathit k/{{\overline{\mathit M}}_{{P}}}$ between 0.01 and 0.1.
13  AAD 2015AU use 20 fb${}^{-1}$ of data from ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV to search for KK gravitons in a warped extra dimension decaying to ${{\mathit Z}}{{\mathit Z}}$ dibosons. See their Figure 2 for limits on the KK graviton mass as a function of the cross section times branching fraction.
14  AAD 2015AZ use 20.3 fb${}^{-1}$ of data from ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV to place a lower bound on the mass of the lightest KK graviton. See their Figure 2 for limits on the KK graviton mass as a function of the cross section times branching ratio.
15  AAD 2015BK use 19.5 fb${}^{-1}$ of data from ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV to search for Higgs boson pair production in the ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit b}}{{\overline{\mathit b}}}$ final state, and exclude masses of the lightest KK graviton. See their Table 9 for the excluded mass ranges with warp parameter values $\mathit k/{{\overline{\mathit M}}_{{P}}}$ = 1.0, 1.5, and 2.0.
16  AAD 2015CT use 20.3 fb${}^{-1}$ of data from ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV to place a lower bound on the mass of the lightest KK graviton. See their Figures 6b and 6c for the limit on the KK graviton mass as a function of the cross section times branching fraction.
17  KHACHATRYAN 2015AE use 20.6 (19.7) fb${}^{-1}$ of data from ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV in the dimuon (dielectron) channel to place a lower bound on the mass of the lightest KK graviton.
18  KHACHATRYAN 2015R use 17.9 fb${}^{-1}$ of data from ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV to search for Higgs boson pair production in the ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit b}}{{\overline{\mathit b}}}$ final state, and exclude a KK graviton with mass from 380 to 830 GeV.
19  AAD 2014V use 20 fb${}^{-1}$ of data from ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV in the dielectron and dimuon channels to place a lower bound on the mass of the lightest KK graviton.
20  KHACHATRYAN 2014A use 19.7 fb${}^{-1}$ of data from ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV to search for KK gravitons in a warped extra dimension decaying to dibosons. See their Figure 9 for limits on the cross section times branching fraction as a function of the KK graviton mass.
21  AAD 2013A use 4.7 fb${}^{-1}$ of data from ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 7 TeV in the ${{\mathit \ell}}{{\mathit \nu}}{{\mathit \ell}}{{\mathit \nu}}$ channel, to place a lower bound on the mass of the lightest KK graviton.
22  AAD 2013AO use 4.7 fb${}^{-1}$ of data from ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 7 TeV in the ${{\mathit \ell}}{{\mathit \nu}}{{\mathit j}}{{\mathit j}}$ channel, to place a lower bound on the mass of the lightest KK graviton.
23  AAD 2013AS use 4.9 fb${}^{-1}$ of data from ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 7 TeV in the diphoton channel to place lower limits on the mass of the lightest KK graviton. The diphoton channel is combined with previous results in the dielectron and dimuon channels to set the best limit. See their Table 2 for warp parameter values $\mathit k/{{\overline{\mathit M}}_{{P}}}$ between 0.01 and 0.1.
24  CHATRCHYAN 2013AF use 5.3 and 4.1 fb${}^{-1}$ of data from ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 7 TeV and 8 TeV, respectively, in the dielectron and dimuon channels, to place a lower bound on the mass of the lightest KK graviton.
25  CHATRCHYAN 2013U use 5 fb${}^{-1}$ of data from ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 7 TeV to search for KK gravitons in a warped extra dimension decaying to ${{\mathit Z}}{{\mathit Z}}$ dibosons. See their Figure 5 for limits on the lightest KK graviton mass as a function of $\mathit k/{{\overline{\mathit M}}_{{P}}}$.
26  AAD 2012AD use 1.02 fb${}^{-1}$ of data from ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 7 TeV to search for KK gravitons in a warped extra dimension decaying to ${{\mathit Z}}{{\mathit Z}}$ dibosons in the ${{\mathit l}}{{\mathit l}}{{\mathit j}}{{\mathit j}}$ and ${{\mathit l}}{{\mathit l}}{{\mathit l}}{{\mathit l}}$ channels (${{\mathit \ell}}={{\mathit e}}$, ${{\mathit \mu}}$). The limit is quoted for the combined ${{\mathit l}}{{\mathit l}}{{\mathit j}}{{\mathit j}}$ + ${{\mathit l}}{{\mathit l}}{{\mathit l}}{{\mathit l}}$ channels. See their Figure 5 for limits on the cross section ${\mathit \sigma (}$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit Z}}{{\mathit Z}}{)}$ as a function of the graviton mass.
27  AAD 2012CC use 4.9 and 5.0 fb${}^{-1}$ of data from ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 7 TeV in the dielectron and dimuon channels, respectively, to place a lower bound on the mass of the lightest KK graviton. See their Figure 5 for limits on the lightest KK graviton mass as a function of $\mathit k/{{\overline{\mathit M}}_{{P}}}$.
28  AAD 2012Y use 2.12 fb${}^{-1}$ of data from ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 7 TeV in the diphoton channel to place lower limits on the mass of the lightest KK graviton. The diphoton channel is combined with previous results in the dielectron and dimuon channels to set the best limit. See their Table 3 for warp parameter values $\mathit k/{{\overline{\mathit M}}_{{P}}}$ between 0.01 and 0.1.
29  AALTONEN 2012V use 6 fb${}^{-1}$ of data from ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\sqrt {s }$ = 1.96 TeV to search for KK gravitons in a warped extra dimension decaying to ${{\mathit Z}}{{\mathit Z}}$ dibosons in the ${{\mathit l}}{{\mathit l}}{{\mathit j}}{{\mathit j}}$ and ${{\mathit l}}{{\mathit l}}{{\mathit l}}{{\mathit l}}$ channels (${{\mathit \ell}}={{\mathit e}}$, ${{\mathit \mu}}$). It provides improved limits over the previous analysis in AALTONEN 2011G. See their Figure 16 for limits from all channels combined on the cross section times branching ratio ${\mathit \sigma (}$ ${{\mathit p}}$ ${{\overline{\mathit p}}}$ $\rightarrow$ ${{\mathit G}^{*}}$ $\rightarrow$ ${{\mathit Z}}{{\mathit Z}}{)}$ as a function of the graviton mass.
30  BAAK 2012 use electroweak precision observables to place a lower bound on the compactification scale $\mathit k$ $\mathit e{}^{- {{\mathit \pi}} {{\mathit k}} {{\mathit R}} }$, assuming Standard Model fields propagate in the bulk and the Higgs is confined to the IR brane. See their Fig. 27 for more details.
31  CHATRCHYAN 2012R use 2.2 fb${}^{-1}$ of data from ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 7 TeV in the diphoton channel to place lower limits on the mass of the lightest KK graviton. See their Table III for warp parameter values $\mathit k/{{\overline{\mathit M}}_{{P}}}$ between 0.01 and 0.1.
32  AAD 2011AD use 1.08 and 1.21 fb${}^{-1}$ of data from ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 7 TeV in the dielectron and dimuon channels, respectively, to place a lower bound on the mass of the lightest graviton. For warp parameter values ${{\mathit k}}/{{\overline{\mathit M}}_{{P}}}$ between 0.01 to 0.1 the lower limit on the mass of the lightest graviton is between 0.71 and 1.63 TeV. See their Table IV for more details.
33  AALTONEN 2011G use $2.5 - 2.9$ fb${}^{-1}$ of data from ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\sqrt {s }$ = 1.96 TeV to search for KK gravitons in a warped extra dimension decaying to ${{\mathit Z}}{{\mathit Z}}$ dibosons via the ${{\mathit e}}{{\mathit e}}{{\mathit e}}{{\mathit e}}$ , ${{\mathit e}}{{\mathit e}}{{\mathit \mu}}{{\mathit \mu}}$ , ${{\mathit \mu}}{{\mathit \mu}}{{\mathit \mu}}{{\mathit \mu}}$ , ${{\mathit e}}{{\mathit e}}{{\mathit j}}{{\mathit j}}$ , and ${{\mathit \mu}}{{\mathit \mu}}{{\mathit j}}{{\mathit j}}$ channels. See their Fig. 20 for limits on the cross section ${\mathit \sigma (}$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit Z}}{{\mathit Z}}{)}$ as a function of the graviton mass.
34  AALTONEN 2011R uses 5.7 fb${}^{-1}$ of data from ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\sqrt {s }$ = 1.96 TeV in the dielectron channel to place a lower bound on the mass of the lightest graviton. It provides combined limits with the diphoton channel analysis of AALTONEN 2011U. For warp parameter values ${{\mathit k}}/{{\overline{\mathit M}}_{{P}}}$ between 0.01 to 0.1 the lower limit on the mass of the lightest graviton is between 612 and 1058 GeV. See their Table I for more details.
35  ABAZOV 2011H use 5.4 fb${}^{-1}$ of data from ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\sqrt {s }$ = 1.96 TeV to place a lower bound on the mass of the lightest graviton. Their 95$\%$ C.L. exclusion limit does not include masses less than 300 GeV.
36  CHATRCHYAN 2011 use 35 and 40 pb${}^{-1}$ of data from ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 7 TeV in the dielectron and dimuon channels, respectively, to place a lower bound on the mass of the lightest graviton. For a warp parameter value ${{\mathit k}}/{{\overline{\mathit M}}_{{P}}}$ = 0.05, the lower limit on the mass of the lightest graviton is 0.855 TeV.
37  AALTONEN 2010N use 2.9 fb${}^{-1}$ of data from ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\sqrt {s }$ = 1.96 TeV to place a lower bound on the mass of the lightest graviton.
38  ABAZOV 2010F use 5.4 fb${}^{-1}$ of data from ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\sqrt {s }$ = 1.96 TeV to place a lower bound on the mass of the lightest graviton. For warp parameter values of $\mathit k/{{\overline{\mathit M}}_{{P}}}$ between 0.01 and 0.1 the lower limit on the mass of the lightest graviton is between 560 and 1050 GeV. See their Fig. 3 for more details.
39  AALTONEN 2008S use ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\sqrt {s }$ = 1.96 TeV to search for KK gravitons in warped extra dimensions. They search for graviton resonances decaying to four electrons via two ${{\mathit Z}}$ bosons using 1.1 fb${}^{-1}$ of data. See their Fig. 8 for limits on $\sigma \cdot{}$B( ${{\mathit G}}$ $\rightarrow$ ${{\mathit Z}}{{\mathit Z}}$ ) versus the graviton mass.
40  ABAZOV 2008J use ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\sqrt {s }$ = 1.96 TeV to search for KK gravitons in warped extra dimensions. They search for graviton resonances decaying to electrons and photons using 1 fb${}^{-1}$ of data. For warp parameter values of $\mathit k/{{\overline{\mathit M}}_{{P}}}$ between 0.01 and 0.1 the lower limit on the mass of the lightest excitation is between 300 and 900 GeV. See their Fig. 4 for more details.
41  AALTONEN 2007G use ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\sqrt {s }$ = 1.96 TeV to search for KK gravitons in warped extra dimensions. They search for graviton resonances decaying to photons using 1.2 fb${}^{-1}$ of data. For warp parameter values of $\mathit k/{{\overline{\mathit M}}_{{P}}}$ = 0.1, 0.05, and 0.01 the bounds on the graviton mass are 850, 694, and 230 GeV, respectively. See their Fig. 3 for more details. See also AALTONEN 2007H.
42  AALTONEN 2007H use ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\sqrt {s }$ = 1.96 TeV to search for KK gravitons in warped extra dimensions. They search for graviton resonances decaying to electrons using 1.3 fb${}^{-1}$ of data. For a warp parameter value of $\mathit k/{{\overline{\mathit M}}_{{P}}}$ = 0.1 the bound on the graviton mass is 807 GeV. See their Fig. 4 for more details. A combined analysis with the diphoton data of AALTONEN 2007G yields for $\mathit k/{{\overline{\mathit M}}_{{P}}}$ = 0.1 a graviton mass lower bound of 889 GeV.
43  ABAZOV 2005N use ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\sqrt {s }$ = 1.96 TeV to search for KK gravitons in warped extra dimensions. They search for graviton resonances decaying to muons, electrons or photons, using 260~pb${}^{-1}$ of data. For warp parameter values of $\mathit k/{{\overline{\mathit M}}_{{P}}}$ = 0.1, 0.05, and 0.01, the bounds on the graviton mass are 785, 650 and 250$~$GeV respectively. See their Fig.$~$3 for more details.
44  ABULENCIA 2005A use ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\sqrt {s }$ = 1.96 TeV to search for KK gravitons in warped extra dimensions. They search for graviton resonances decaying to muons or electrons, using 200~pb${}^{-1}$ of data. For warp parameter values of $\mathit k/{{\overline{\mathit M}}_{{P}}}$ = 0.1, 0.05, and 0.01, the bounds on the graviton mass are 710, 510 and 170 GeV respectively.
  References:
SIRUNYAN 2018F
JHEP 1801 054 Search for Resonant and Nonresonant Higgs Boson Pair Production in the ${\mathit {\mathit b}}{\mathit {\overline{\mathit b}}}{{\mathit \ell}}{{\mathit \nu}}{{\mathit \ell}}{{\mathit \nu}}$ Final State in Proton-Proton Collisions at $\sqrt {s }$ = 13 TeV
AABOUD 2017AP
PL B775 105 Search for New Phenomena in High-Mass Diphoton Final States using 37 ${\mathrm {fb}}{}^{-1}$ of Proton-Proton Collisions Collected at $\sqrt {s }$ = 13 TeV with the ATLAS Detector
KHACHATRYAN 2017W
PL B769 520 Search for Dijet Resonances in Proton-Proton Collisions at $\sqrt {s }$ = 13 TeV and Constraints on Dark Matter and other Models
KHACHATRYAN 2017T
PL B768 57 Search for Narrow Resonances in Dilepton Mass Spectra in Proton-Proton Collisions at $\sqrt {s }$ = 13 TeV and Combination with 8 TeV Data
SIRUNYAN 2017AK
PL B774 533 Combination of Searches for Heavy Resonances Decaying to ${{\mathit W}}{{\mathit W}}$, ${{\mathit W}}{{\mathit Z}}$, ${{\mathit Z}}{{\mathit Z}}$, ${{\mathit W}}{{\mathit H}}$, and ${{\mathit Z}}{{\mathit H}}$ Boson Pairs in Proton-Proton Collisions at $\sqrt {s }$ = 8 and 13 TeV
AABOUD 2016AE
JHEP 1609 173 Searches for Heavy Diboson Resonances in ${{\mathit p}}{{\mathit p}}$ Collisions at $\sqrt {s }$ = 13 TeV with the ATLAS Detector
AABOUD 2016I
PR D94 052002 Search for Pair Production of Higgs Bosons in the ${\mathit {\mathit b}}{\mathit {\overline{\mathit b}}}{\mathit {\mathit b}}{\mathit {\overline{\mathit b}}}$ Final State using Proton-Proton Collisions at $\sqrt {s }$ = 13 TeV with the ATLAS Detector
AABOUD 2016H
JHEP 1609 001 Search for Resonances in Diphoton Events at $\sqrt {s }$ = 13 TeV with the ATLAS Detector
AAD 2016R
PL B755 285 Combination of Searches for ${{\mathit W}}{{\mathit W}}$, ${{\mathit W}}{{\mathit Z}}$, and ${{\mathit Z}}{{\mathit Z}}$ Resonances in ${{\mathit p}}{{\mathit p}}$ Collisions at $\sqrt {s }$ = 8 TeV with the ATLAS Detector
KHACHATRYAN 2016M
PRL 117 051802 Search for Resonant Production of High-Mass Photon Pairs in Proton-Proton Collisions at $\sqrt {s }$ = 8 and 13 TeV
KHACHATRYAN 2016BQ
PR D94 052012 Search for Two Higgs Bosons in Final States Containing Two Photons and Two Bottom Quarks in Proton-Proton Collisions at 8 TeV
AAD 2015AD
PR D92 032004 Search for High-Mass Diphoton Resonances in ${{\mathit p}}{{\mathit p}}$ Collisions at $\sqrt {s }$ = 8 TeV with the ATLAS Detector
AAD 2015CT
JHEP 1512 055 Search for High-Mass Diboson Resonances with Boson-Tagged Jets in Proton-Proton Collisions at $\sqrt {s }$ = 8 TeV with the ATLAS Detector
AAD 2015AZ
EPJ C75 209 Search for Production of ${{\mathit W}}{{\mathit W}}/{{\mathit W}}{{\mathit Z}}$ Resonances Decaying to a Lepton, Neutrino and Jets in ${{\mathit p}}{{\mathit p}}$ Collisions at $\sqrt {s }$ = 8 TeV with the ATLAS Detector
AAD 2015BK
EPJ C75 412 Search for Higgs Boson Pair Production in the ${\mathit {\mathit b}}{\mathit {\overline{\mathit b}}}{\mathit {\mathit b}}{\mathit {\overline{\mathit b}}}$ Final State from ${{\mathit p}}{{\mathit p}}$ Collisions at $\sqrt {s }$ = 8 TeV with the ATLAS Detector
AAD 2015AU
EPJ C75 69 Search for Resonant Diboson Production in the ${{\mathit \ell}}{{\mathit \ell}}{\mathit {\mathit q}}{\mathit {\overline{\mathit q}}}$ Final State in ${{\mathit p}}{{\mathit p}}$ Collisions at $\sqrt {s }$ = 8 TeV with the ATLAS Detector
KHACHATRYAN 2015AE
JHEP 1504 025 Search for Physics Beyond the Standard Model in Dilepton Mass Spectra in Proton-Proton Collisions at $\sqrt {s }$ = 8 TeV
KHACHATRYAN 2015R
PL B749 560 Search for Resonant Pair Production of Higgs Bosons Decaying to Two Bottom Quark-Antiquark Pairs in Proton-Proton Collisions at 8 TeV
AAD 2014V
PR D90 052005 Search for High-Mass Dilepton Resonances in ${{\mathit p}}{{\mathit p}}$ Collisions at $\sqrt {s }$ = 8 TeV with the ATLAS Detector
KHACHATRYAN 2014A
JHEP 1408 174 Search for Massive Resonances Decaying into Pairs of Boosted Bosons in Semi-Leptonic Final States at $\sqrt {s }$ = 8 TeV
AAD 2013AS
NJP 15 043007 Search for Extra Dimensions in Diphoton Events Using Proton$−$Proton Collisions Recorded at $\sqrt {s }$ = 7 TeV with the ATLAS Detector at the LHC
AAD 2013AO
PR D87 112006 Search for Resonant Diboson Production in the ${{\mathit \ell}}{{\mathit \nu}}{{\mathit j}}{{\mathit j}}$ Decay Channels with the ATLAS Detector at 7 TeV
AAD 2013A
PL B718 860 Search for New Phenomena in the ${{\mathit W}}$ ${{\mathit W}}$ $\rightarrow$ ${{\mathit \ell}}{{\mathit \nu}}{{\mathit \ell}^{\,'}}{{\mathit \nu}^{\,'}}$ Final State in ${{\mathit p}}{{\mathit p}}$ Collisions at $\sqrt {s }$ = 7 TeV with the ATLAS Detector
CHATRCHYAN 2013U
JHEP 1302 036 Search for Exotic Resonances Decaying into ${{\mathit W}}{{\mathit Z}}/{{\mathit Z}}{{\mathit Z}}$ in ${{\mathit p}}{{\mathit p}}$ Collisions at $\sqrt {s }$ = 7 TeV
CHATRCHYAN 2013AF
PL B720 63 Search for Heavy Narrow Dilepton Resonances in ${{\mathit p}}{{\mathit p}}$ Collisions at $\sqrt {s }$ = 7 TeV and $\sqrt {s }$ = 8 TeV
AAD 2012AD
PL B712 331 Search for New Particles Decaying to ${{\mathit Z}}{{\mathit Z}}$ using Final States with Leptons and Jets with the ATLAS Detector in $\sqrt {s }$ = 7 TeV Proton$−$Proton Collisions
AAD 2012CC
JHEP 1211 138 Search for High-Mass Resonances Decaying to Dilepton Final States in ${{\mathit p}}{{\mathit p}}$ Collisions at $\sqrt {s }$ = 7 TeV with the ATLAS Detector
AAD 2012Y
PL B710 538 Search for Extra Dimensions using Diphoton Events in 7 TeV Proton$−$Proton Collisions with the ATLAS Detector
AALTONEN 2012V
PR D85 012008 Search for High-Mass Resonances Decaying into ${{\mathit Z}}{{\mathit Z}}$ in ${{\mathit p}}{{\overline{\mathit p}}}$ Collisions at $\sqrt {s }$ = 1.96 TeV
BAAK 2012
EPJ C72 2003 Updated Status of the Global Electroweak Fit and Constraints on New Physics
CHATRCHYAN 2012R
PRL 108 111801 Search for Signatures of Extra Dimensions in the Diphoton Mass Spectrum at the Large Hadron Collider
AAD 2011AD
PRL 107 272002 Search for Dilepton Resonances in ${{\mathit p}}{{\mathit p}}$ Collisions at $\sqrt {s }$ = 7 TeV with the ATLAS Detector
AALTONEN 2011R
PRL 107 051801 Search for New Dielectron Resonances and Randall-Sundrum Gravitons at the Collider Detector at Fermilab
AALTONEN 2011G
PR D83 112008 Search for New Heavy Particles Decaying to ${{\mathit Z}}{{\mathit Z}}$ --> $\mathit llll$, $\mathit lljj$ in ${{\mathit p}}{{\overline{\mathit p}}}$ Collisions at $\sqrt {s }$ = 1.96 TeV
ABAZOV 2011H
PRL 107 011801 Search for Resonant ${{\mathit W}}{{\mathit W}}$ and ${{\mathit W}}{{\mathit Z}}$ Production in ${{\mathit p}}{{\overline{\mathit p}}}$ Collisions at $\sqrt {s }$ = 1.96 TeV
CHATRCHYAN 2011
JHEP 1105 093 Search for Resonances in the Dilepton Mass Distribution in ${{\mathit p}}{{\mathit p}}$ Collisions at $\sqrt {s }$ = 7 TeV
AALTONEN 2010N
PRL 104 241801 Search for ${{\mathit W}}{{\mathit W}}$ and ${{\mathit W}}{{\mathit Z}}$ Resonances Decaying to Electron, Missing $\mathit E_{T}$, and Two Jets in ${{\mathit p}}{{\mathit p}}$ Collisions at $\sqrt {s }$ = 1.96 TeV
ABAZOV 2010F
PRL 104 241802 Search for Randall-Sundrum Gravitons in the Dielectron and Diphoton Final States with 5.4 fb${}^{-1}$ of Data from ${{\mathit p}}{{\overline{\mathit p}}}$ Collisions at $\sqrt {s }$ = 1.96$~$TeV
AALTONEN 2008S
PR D78 012008 Search for New Heavy Particles Decaying to ${{\mathit Z}^{0}}$ ${{\mathit Z}^{0}}$ $\rightarrow$ ${{\mathit e}}{{\mathit e}}{{\mathit e}}{{\mathit e}}$ in ${{\mathit p}}{{\overline{\mathit p}}}$ Collisions at $\sqrt {s }$ = 1.96 TeV
ABAZOV 2008J
PRL 100 091802 Search for Randall-Sundrum Gravitons with 1 ${\mathrm {fb}}{}^{-1}$ of Data from ${{\mathit p}}{{\overline{\mathit p}}}$ Collisions at $\sqrt {s }$ = 1.96 TeV
AALTONEN 2007G
PRL 99 171801 Search for High-Mass Diphoton States and Limits on Randall-Sundrum Gravitons at CDF
AALTONEN 2007H
PRL 99 171802 Search for New Physics in High-Mass Electron-Positron Events in ${{\mathit p}}{{\overline{\mathit p}}}$ Collisions at $\sqrt {s }$ = 1.96 TeV
ABAZOV 2005N
PRL 95 091801 Search for Randall-Sundrum Gravitons in Dilepton and Diphoton Final States
ABULENCIA 2005A
PRL 95 252001 Search for New High-Mass Particles Decaying to Lepton Pairs in ${{\mathit p}}{{\overline{\mathit p}}}$ Collisions at $\sqrt {s }$ =1.96 TeV