Half-life 0${{\mathit \nu}}$ double-$\beta $ decay

INSPIRE   PDGID:
S076H0N
In most cases the transitions (Z,A)$~\rightarrow~$(Z+2,A) $+~2{{\mathit e}^{-}}$ to the 0${}^{+}$ ground state of the final nucleus are listed. We also list transitions that decrease the nuclear charge (2${{\mathit e}^{+}}$, ${{\mathit e}^{+}}$ CC and double EC) and transitions to an excited state of the final nucleus (0${}^{+}_{i}$, 2${}^{+}$, and 2${}^{+}_{i}$). In the following Listings only the best or comparable limits for the half-lives of each transition are reported and only those with about T$_{1/2}>10^{23}$ years that are relevant for particle physics.

${\mathrm {\mathit t_{1/2}}}$ ($ 10^{23} $ yr) CL$\%$ ISOTOPE TRANSITION METHOD DOCUMENT ID
• • We do not use the following data for averages, fits, limits, etc. • •
$ >2300 $ $90$ ${}^{136}\mathrm {Xe}$ KamLAND-Zen 1
ABE
2023
$ >830 $ $90$ ${}^{76}\mathrm {Ge}$ MAJORANA 2
ARNQUIST
2023
$ >220 $ $90$ ${}^{130}\mathrm {Te}$ CUORE 3
ADAMS
2022A
$ >36 $ $90$ ${}^{128}\mathrm {Te}$ CUORE 4
ADAMS
2022B
$ >12 $ $90$ ${}^{136}\mathrm {Xe}$ XENON1T 5
APRILE
2022A
$ >18 $ $90$ ${}^{100}\mathrm {Mo}$ CUPID-Mo 6
AUGIER
2022
$ >46 $ $90$ ${}^{82}\mathrm {Se}$ CUPID-0 7
AZZOLINI
2022
$ >1.8 $ $90$ ${}^{82}\mathrm {Se}$ $g.s. \rightarrow 0{}^{+}_{1}$ CUPID-0 8
AZZOLINI
2022
$ >3.0 $ $90$ ${}^{82}\mathrm {Se}$ $g.s. \rightarrow 2{}^{+}_{1}$ CUPID-0 9
AZZOLINI
2022
$ >3.2 $ $90$ ${}^{82}\mathrm {Se}$ $g.s. \rightarrow 2{}^{+}_{2}$ CUPID-0 10
AZZOLINI
2022
$ >59 $ $90$ ${}^{130}\mathrm {Te}$ $g.s. \rightarrow 0{}^{+}_{1}$ CUORE 11
ADAMS
2021A
$ >15 $ $90$ ${}^{100}\mathrm {Mo}$ CUPID-Mo 12
ARMENGAUD
2021
$ >39.9 $ $90$ ${}^{76}\mathrm {Ge}$ $g.s. \rightarrow 0{}^{+}_{1}$ MAJORANA-Dem 13
ARNQUIST
2021
$ >21.2 $ $90$ ${}^{76}\mathrm {Ge}$ $g.s. \rightarrow 2{}^{+}_{1}$ MAJORANA-Dem 14
ARNQUIST
2021
$ >9.7 $ $90$ ${}^{76}\mathrm {Ge}$ $g.s. \rightarrow 2{}^{+}_{2}$ MAJORANA-Dem 15
ARNQUIST
2021
$ >320 $ $90$ ${}^{130}\mathrm {Te}$ CUORE 16
ADAMS
2020A
$ >1800 $ $90$ ${}^{76}\mathrm {Ge}$ GERDA 17
AGOSTINI
2020B
$ >14 $ $90$ ${}^{130}\mathrm {Te}$ $g.s. \rightarrow 0{}^{+}_{1}$ CUORE-0 18
ALDUINO
2019
$ >0.95 $ $90$ ${}^{100}\mathrm {Mo}$ AMoRE 19
ALENKOV
2019
$ >350 $ $90$ ${}^{136}\mathrm {Xe}$ EXO-200 20
ANTON
2019
$ >2.4 $ $90$ ${}^{136}\mathrm {Xe}$ PANDAX-II 21
NI
2019
$ >150 $ $90$ ${}^{130}\mathrm {Te}$ CUORE 22
ALDUINO
2018
$ >2.5 $ $90$ ${}^{82}\mathrm {Se}$ NEMO-3 23
ARNOLD
2018
$ >2.2 $ $90$ ${}^{116}\mathrm {Cd}$ AURORA 24
BARABASH
2018
$ >1.1 $ $90$ ${}^{134}\mathrm {Xe}$ EXO-200 25
ALBERT
2017C
$ >1 $ $90$ ${}^{116}\mathrm {Cd}$ NEMO-3 26
ARNOLD
2017
$ >40 $ $90$ ${}^{130}\mathrm {Te}$ CUORICINO 27
ALDUINO
2016
$ >260 $ $90$ ${}^{136}\mathrm {Xe}$ $g.s. \rightarrow 2{}^{+}_{1}$ KamLAND-Zen 28
ASAKURA
2016
$ >260 $ $90$ ${}^{136}\mathrm {Xe}$ $g.s. \rightarrow 2{}^{+}_{2}$ KamLAND-Zen 29
ASAKURA
2016
$ >240 $ $90$ ${}^{136}\mathrm {Xe}$ $g.s. \rightarrow 0{}^{+}_{1}$ KamLAND-Zen 30
ASAKURA
2016
$ >11 $ $90$ ${}^{100}\mathrm {Mo}$ NEMO-3 31
ARNOLD
2015
$ >9.4 $ $90$ ${}^{130}\mathrm {Te}$ $g.s. \rightarrow 0{}^{+}_{1}$ CUORICINO 32
ANDREOTTI
2012
$ >0.58 $ $90$ ${}^{48}\mathrm {Ca}$ CaF$_{2}$ scint. 33
UMEHARA
2008
$ >0.89 $ $90$ ${}^{100}\mathrm {Mo}$ $g.s. \rightarrow 0{}^{+}_{1}$ NEMO-3 34
ARNOLD
2007
$ >1.6 $ $90$ ${}^{100}\mathrm {Mo}$ $g.s. \rightarrow 2{}^{+}$ NEMO-3 35
ARNOLD
2007
$ >1.1 $ $90$ ${}^{128}\mathrm {Te}$ Cryog. det. 36
ARNABOLDI
2003
$ >1.7 $ $90$ ${}^{116}\mathrm {Cd}$ ${}^{116}\mathrm {Cd}WO_{4}$ scint. 37
DANEVICH
2003
$ >157 $ $90$ ${}^{76}\mathrm {Ge}$ Enriched HPGe 38
AALSETH
2002B
1  ABE 2023 use the combined data set of the KamLAND-Zen 400 and 800 experiments, utilizing 745 kg of isotopically enriched xenon (90.9$\%$ ${}^{136}\mathrm {Xe}$), dissolved in liquid scintillator and an exposure of 970 kg$\cdot{}$yr of ${}^{136}\mathrm {Xe}$, to derive this limit on 0${{\mathit \nu}}$ ${{\mathit \beta}}{{\mathit \beta}}$ decay. A half-life sensitivity of $1.5 \times 10^{26}$ yr is reported.
2  ARNQUIST 2023 use the final data set of the MAJORANA DEMONSTRATOR experiment, operating enriched in ${}^{76}\mathrm {Ge}$ detectors, to set this limit on the 0 ${{\mathit \nu}}$ ${{\mathit \beta}}{{\mathit \beta}}$ half-life of ${}^{76}\mathrm {Ge}$. The exposure is 64.5 kg$\cdot{}$yr. A median sensitivity of $8.1 \times 10^{25}$ yr is reported.
3  ADAMS 2022A use the CUORE TeO$_{2}$ experiment with an exposure of 288.8 kg$\cdot{}$yr of ${}^{130}\mathrm {Te}$ to place a limit on its 0${{\mathit \nu}}$ ${{\mathit \beta}}{{\mathit \beta}}$ decay. The median sensitivity is reported as $280 \times 10^{23}$ yr. Superseeds ADAMS 2020A.
4  ADAMS 2022B use the CUORE bolometric calorimeter to place a limit on the 0${{\mathit \nu}}$ ${{\mathit \beta}}{{\mathit \beta}}$ decay half-life of ${}^{128}\mathrm {Te}$.
5  APRILE 2022A use 36.16 kg$\cdot{}$yr of ${}^{136}\mathrm {Xe}$ exposure of the XENON1T not enriched detector to establish the stated limit.
6  AUGIER 2022 use the final data set of the CUPID-Mo cryogenic calorimeter, utilizing enriched Li$_{2}{}^{100}\mathrm {Mo}{}^{}\mathrm {O}_{4}$ and an isotope exposure of 1.47 kg$\cdot{}$y, to place a limit on the 0${{\mathit \nu}}$ ${{\mathit \beta}}{{\mathit \beta}}$ decay half-life.
7  AZZOLINI 2022 use the CUPID-0 scintillating cryogenic bolometer to set a limit on the 0 ${{\mathit \nu}}{{\mathit \beta}}{{\mathit \beta}}$ half-life of ${}^{82}\mathrm {Se}$. The analyzed isotope exposure is 8.82 kg$\cdot{}$yr. A median sensitivity of $7 \times 10^{24}$ yr is reported. Supersedes AZZOLINI 2019 .
8  AZZOLINI 2022 use CUPID-0 data with an isotope exposure of 8.82 kg$\cdot{}$yr to set a limit on the 0 ${{\mathit \nu}}{{\mathit \beta}}{{\mathit \beta}}$ decay to the first excited 0${}^{+}$ state.
9  AZZOLINI 2022 use CUPID-0 data with an isotope exposure of 8.82 kg$\cdot{}$yr to set a limit on the 0 ${{\mathit \nu}}{{\mathit \beta}}{{\mathit \beta}}$ decay to the first excited 2${}^{+}$ state.
10  AZZOLINI 2022 use CUPID-0 data with an isotope exposure of 8.82 kg$\cdot{}$yr to set a limit on the 0 ${{\mathit \nu}}{{\mathit \beta}}{{\mathit \beta}}$ decay to the second excited 2${}^{+}$ state.
11  ADAMS 2021A et al. used 101.76 kg yr of ${}^{130}\mathrm {Te}$ exposure of the CUORE (LNGS) bolometric detector to place a limit on the decay to the first excited state of ${}^{130}\mathrm {Xe}$, superseding ALDUINO 2019 as the most restrictive bound on this particular decay.
12  ARMENGAUD 2021 use the CUPID-Mo 4.2 kg array of enriched Li$_{2}{}^{100}\mathrm {Mo}O_{4}$ scintillating bolometers, with 1.17 kg$\cdot{}$yr exposure, to set this limit.
13  ARNQUIST 2021 use the MAJORANA demonstrator to set this limit for the 0${{\mathit \nu}}$ ${{\mathit \beta}}{{\mathit \beta}}$ decay to the first excited 0${}^{+}$ state, with a 41.9 kg yr isotopic exposure. The median sensitivity is $39.9 \times 10^{23}$ yr.
14  ARNQUIST 2021 use the MAJORANA demonstrator to set this limit for the 0${{\mathit \nu}}$ ${{\mathit \beta}}{{\mathit \beta}}$ decay to the first excited 2${}^{+}$ state, with a 41.9 kg yr isotopic exposure. The median sensitivity is $21.2 \times 10^{23}$ yr.
15  ARNQUIST 2021 use the MAJORANA demonstrator to set this limit for the 0${{\mathit \nu}}$ ${{\mathit \beta}}{{\mathit \beta}}$ decay to the second excited 2${}^{+}$ state, with a 41.9 kg yr isotopic exposure. The median sensitivity is $18.6 \times 10^{23}$ yr.
16  ADAMS 2020A use the CUORE detector to search for the 0${{\mathit \nu}}$ ${{\mathit \beta}}{{\mathit \beta}}$ decay of ${}^{130}\mathrm {Te}$. The exposure was 372.5 kg$\cdot{}$yr of TeO$_{2}$ corresponding to 103.6 kg$\cdot{}$yr of ${}^{130}\mathrm {Te}$. The exclusion sensitivity is $1.7 \times 10^{25}$yr. Supersedes ALDUINO 2018 .
17  AGOSTINI 2020B present the final data set of the GERDA experiment, searching for 0${{\mathit \nu}}$ ${{\mathit \beta}}{{\mathit \beta}}$ decay of ${}^{76}\mathrm {Ge}$ with isotopically enriched, high resolution ${}^{}\mathrm {Ge}$ detectors. A final exposure of 127.2 kg$\cdot{}$yr is reported. The experiment reports the lowest background and longest half life limit ever achieved by any double beta decay experiment. The reported experiment sensitivity equals the limit. Supersedes AGOSTINI 2019 .
18  ALDUINO 2019 use the combined data of the CUORICINO and CUORE-0 experiments to place a lower limit on the half life of the 0 ${{\mathit \nu}}$ ${{\mathit \beta}}{{\mathit \beta}}$ decay of ${}^{130}\mathrm {Te}$ to the first excited 0${}^{+}$ state of ${}^{130}\mathrm {Xe}$. Supersedes ANDREOTTI 2012 .
19  ALENKOV 2019 report the 0${{\mathit \nu}}$ ${{\mathit \beta}}{{\mathit \beta}}$ decay half-life limit based on the 52.1 kg$\cdot{}$d exposure of ${}^{100}\mathrm {Mo}$, of a a cryogenic dual heat and light detector in the Yangyang underground laboratory. The median sensitivity is $1.1 \times 10^{23}$ years.
20  ANTON 2019 uses he complete dataset of the EXO-200 detector to search for the 0${{\mathit \nu}}$ ${{\mathit \beta}}{{\mathit \beta}}$ decay. The exposure is 234.1 kg yr. The median sensitivity is $5.0 \times 10^{25}$ yr. Supersedes ALBERT 2018 and ALBERT 2014B.
21  NI 2019 use the PandaX-II dual phase TPC at CJPL to search for the 0${{\mathit \nu}}$ ${{\mathit \beta}}{{\mathit \beta}}$ decay of ${}^{136}\mathrm {Xe}$. The half-life limit $2.4 \times 10^{23}$ yr is obtained from 22.2 kg yr exposure with a sensitivity of $1.9 \times 10^{23}$ yr.
22  ALDUINO 2018 uses the CUORE detector to search for the 0${{\mathit \nu}}$ ${{\mathit \beta}}{{\mathit \beta}}$ decay of ${}^{130}\mathrm {Te}$. The exposure is 86.3 kg$\cdot{}$year of natural TeO$_{2}$ corresponding to 24.0 kg$\cdot{}$year for ${}^{130}\mathrm {Te}$. The median sensitivity is $0.7 \times 10^{25}$ yr. The limit is obtained combining the new data from CUORE with those of CUORE0 (9.8 kg$\cdot{}$year of ${}^{130}\mathrm {Te}$) and Cuoricino (19.8 kg$\cdot{}$year of ${}^{130}\mathrm {Te}$).
23  ARNOLD 2018 use the NEMO-3 tracking detector to place a limit on the 0 ${{\mathit \nu}}{{\mathit \beta}}{{\mathit \beta}}$ decay of ${}^{82}\mathrm {Se}$. This is a slightly weaker limit than in BARABASH 2011A, using the same detector. Supersedes ARNOLD 2005A.
24  BARABASH 2018 use 1.162 kg of ${}^{116}\mathrm {Cd}WO_{4}$ scintillating crystals to obtain this limit. Supersedes DANEVICH 2003 with analogous source and is more sensitive than ARNOLD 2017 .
25  ALBERT 2017C uses the EXO-200 detector that contains $19.098$ $\pm0.014\%$ admixture of ${}^{134}\mathrm {Xe}$ to search for the 0${{\mathit \nu}}$ and 2${{\mathit \nu}}$ ${{\mathit \beta}}{{\mathit \beta}}$ decay modes. The exposure is 29.6 kg$\cdot{}$year. The median sensitivity is $1.9 \times 10^{21}$ years.
26  ARNOLD 2017 use the NEMO-3 tracking calorimeter, containing 410 g of enriched ${}^{116}\mathrm {Cd}$ exposed for 5.26 yr, to determine the half-life limit. Supersedes BARABASH 2011A.
27  ALDUINO 2016 report result obtained with 9.8 kg$\cdot{}$y of data collected with the CUORE-0 bolometer, combined with data from the CUORICINO. Supersedes ALFONSO 2015 .
28  ASAKURA 2016 use the KamLAND-Zen liquid scintillator calorimeter (${}^{136}\mathrm {Xe}$ 89.5 kg yr) to place a limit on the 0${{\mathit \nu}}{{\mathit \beta}}{{\mathit \beta}}$-decay into the first excited state of the daughter nuclide.
29  ASAKURA 2016 use the KamLAND-Zen liquid scintillator calorimeter (${}^{136}\mathrm {Xe}$ 89.5 kg yr) to place a limit on the 0${{\mathit \nu}}{{\mathit \beta}}{{\mathit \beta}}$-decay into the second excited state of the daughter nuclide.
30  ASAKURA 2016 use the KamLAND-Zen liquid scintillator calorimeter (${}^{136}\mathrm {Xe}$ 89.5 kg yr) to place a limit on the 0${{\mathit \nu}}{{\mathit \beta}}{{\mathit \beta}}$-decay into the third excited state of the daughter nuclide.
31  ARNOLD 2015 use the NEMO-3 tracking calorimeter with 34.3 kg yr exposure to determine the limit of 0${{\mathit \nu}}{{\mathit \beta}}{{\mathit \beta}}$-half life of ${}^{100}\mathrm {Mo}$. Supersedes {ARNOLD 2005A} and BARABASH 2011A.
32  ANDREOTTI 2012 use high resolution TeO$_{2}$ bolometric calorimeter to search for the 0${{\mathit \nu}}{{\mathit \beta}}{{\mathit \beta}}$ decay of ${}^{130}\mathrm {Te}$ leading to the excited 0${}^{1}_{+}$ state at 1793.5 keV.
33  UMEHARA 2008 use CaF$_{2}$ scintillation calorimeter to search for double beta decay of ${}^{48}\mathrm {Ca}$. Limit is significantly more stringent than quoted sensitivity: $18 \times 10^{21}$ years.
34  Limit on 0${{\mathit \nu}}$-decay to the first excited 0${}^{+}_{1}$-state of daughter nucleus using NEMO-3 tracking calorimeter. Supersedes DASSIE 1995 .
35  Limit on 0${{\mathit \nu}}$-decay to the first excited 2${}^{+}$-state of daughter nucleus using NEMO-3 tracking calorimeter.
36  Supersedes ALESSANDRELLO 2000 . Array of TeO$_{2}$ crystals in high resolution cryogenic calorimeter. Some enriched in ${}^{128}\mathrm {Te}$. Ground state to ground state decay.
37  Limit on 0${{\mathit \nu}}{{\mathit \beta}}{{\mathit \beta}}$ decay of ${}^{116}\mathrm {Cd}$ using enriched CdWO$_{4}$ scintillators. Supersedes DANEVICH 2000 .
38  AALSETH 2002B limit is based on 117 mol$\cdot{}$yr of data using enriched Ge detectors. Background reduction by means of pulse shape analysis is applied to part of the data set. Reported limit is slightly less restrictive than that in KLAPDOR-KLEINGROTHAUS 2001 However, it excludes part of the allowed half-life range reported in KLAPDOR-KLEINGROTHAUS 2001B for the same nuclide. The analysis has been criticized in KLAPDOR-KLEINGROTHAUS 2004B. The criticism was addressed and disputed in AALSETH 2004 .
References:
ABE 2023
PRL 130 051801 Search for the Majorana Nature of Neutrinos in the Inverted Mass Ordering Region with KamLAND-Zen
ARNQUIST 2023
PRL 130 062501 Final Result of the Majorana Demonstrator?s Search for Neutrinoless Double-? Decay in Ge76
ADAMS 2022B
PRL 129 222501 New Direct Limit on Neutrinoless Double Beta Decay Half-Life of Te128 with CUORE
ADAMS 2022A
NAT 604 53 Search for Majorana neutrinos exploiting millikelvin cryogenics with CUORE
APRILE 2022A
PR C106 024328 Double-Weak Decays of $^{124}$Xe and $^{136}$Xe in the XENON1T and XENONnT Experiments
AUGIER 2022
EPJ C82 1033 Final results on the $0\nu \beta \beta $ decay half-life limit of $^{100}$Mo from the CUPID-Mo experiment
AZZOLINI 2022
PRL 129 111801 Final Result on the Neutrinoless Double Beta Decay of $^{82}$Se with CUPID-0
ADAMS 2021A
EPJ C81 567 Search for double-beta decay of $\mathrm {^{130}Te}$ to the $0^+$ states of $\mathrm {^{130}Xe}$ with CUORE
ARMENGAUD 2021
PRL 126 181802 New Limit for Neutrinoless Double-Beta Decay of $^{100}$Mo from the CUPID-Mo Experiment
ARNQUIST 2021
PR C103 015501 Search for double-$\beta$ decay of $^{76}$Ge to excited states of $^{76}$Se with the MAJORANA DEMONSTRATOR
ADAMS 2020A
PRL 124 122501 Improved Limit on Neutrinoless Double-Beta Decay in $^{130}$Te with CUORE
AGOSTINI 2020B
PRL 125 252502 Final Results of GERDA on the Search for Neutrinoless Double-$\beta$ Decay
ALDUINO 2019
EPJ C79 795 Double-beta decay of $^{130}\hbox {Te}$ to the first $0^+$ excited state of $^{130}\hbox {Xe}$ with CUORE-0
ALENKOV 2019
EPJ C79 791 First Results from the AMoRE-Pilot neutrinoless double beta decay experiment
ANTON 2019
PRL 123 161802 Search for Neutrinoless Double-$\beta$ Decay with the Complete EXO-200 Dataset
NI 2019
CP C43 113001 Searching for neutrino-less double beta decay of $^{136}$Xe with PandaX-II liquid xenon detector
ALDUINO 2018
PRL 120 132501 First Results from CUORE: A Search for Lepton Number Violation via $0\nu\beta\beta$ Decay of $^{130}$Te
ARNOLD 2018
EPJ C78 821 Final results on ${}^\mathbf 82 \hbox {Se}$ double beta decay to the ground state of ${}^\mathbf 82 \hbox {Kr}$ from the NEMO-3 experiment
BARABASH 2018
PR D98 092007 Final results of the Aurora experiment to study $2\beta$ decay of $^{116}\mathrm{Cd}$ with enriched $^{116}\mathrm{Cd}{\mathrm{WO}}_{4}$ crystal scintillators
ALBERT 2017C
PR D96 092001 Searches for Double Beta Decay of ${}^{134}\mathrm {Xe}$ with EXO-200
ARNOLD 2017
PR D95 012007 Measurement of the 2${{\mathit \nu}}{{\mathit \beta}}{{\mathit \beta}}$ Decay Half-Life and Search for the 0${{\mathit \nu}}\beta \beta $ Decay of ${}^{116}\mathrm {Cd}$ with the NEMO-3 Detector
ALDUINO 2016
PR C93 045503 Analysis Techniques for the Evaluation of the Neutrinoless Double-${{\mathit \beta}}$ Decay Lifetime in ${}^{130}\mathrm {Te}$ with the CUORE-0 Detector
ASAKURA 2016
NP A946 171 Search for Double-beta Decay of ${}^{136}\mathrm {Xe}$ to Excited States of ${}^{136}\mathrm {Ba}$ with the KamLAND-Zen experiment
ARNOLD 2015
PR D92 072011 Results of the Search for Neutrinoless Double-${{\mathit \beta}}$ Decay in ${}^{100}\mathrm {Mo}$ with the NEMO-3 Experiment
ANDREOTTI 2012
PR C85 045503 Search for Double-${{\mathit \beta}}$ Decay of ${}^{130}\mathrm {Te}$ to the First $0{}^{+}{}^{}$ Excited State of ${}^{130}\mathrm {Xe}$ with the CUORICINO Experiment Bolometer Array
UMEHARA 2008
PR C78 058501 Neutrino-less Double-$\beta $ Decay of ${}^{48}\mathrm {Ca}$ Studied by CaF$_{2}$(Eu) Scintillators
ARNOLD 2007
NP A781 209 Measurement of Double beta Decay of ${}^{100}\mathrm {Mo}$ to Excited States in the NEMO-3 Experiment
ARNABOLDI 2003
PL B557 167 A Calorimetric Search on Double beta Decay of ${}^{130}\mathrm {Te}$
DANEVICH 2003
PR C68 035501 Search for 2$\beta $ Decay of Cadmium and Tungsten Isotopes: Final Results of the Solotvina Experiment
AALSETH 2002B
PR D65 092007 The IGEX ${}^{76}\mathrm {Ge}$ Neutrinoless Double beta Decay Experiment: Prospects for Next Generation Experiments