Half-life measurements of the two-neutrino double-$\beta $ decay

INSPIRE   PDGID:
S076H2N
The measured half-life values for the transitions (Z,A)$~\rightarrow~$(Z+2,A) $+$ 2${{\mathit e}^{-}}$ $+$ 2${{\overline{\mathit \nu}}_{{e}}}$ to the 0${}^{+}$ ground state of the final nucleus are listed. We also list the transitions to an excited state of the final nucleus (0${}^{+}_{i}$, etc.). We report only the measuremetnts with the smallest (or comparable) uncertainty for each transition.

${\mathrm {\mathit t_{1/2}}}$ ($ 10^{21} $ yr) ISOTOPE TRANSITION METHOD DOCUMENT ID
• • We do not use the following data for averages, fits, limits, etc. • •
$ 2190 \pm70 $ ${}^{128}\mathrm {Te}$ CUORE 1
ADAMS
2022B
$ 11 \pm2 \pm1 $ ${}^{124}\mathrm {Xe}$ XENON1T 2
APRILE
2022A
$ 11.8 \pm1.3 \pm1.4 $ ${}^{124}\mathrm {Xe}$ XENONnT 3
APRILE
2022B
$ 2.34 {}^{+0.08}_{-0.46} {}^{+0.30}_{-0.17} $ ${}^{136}\mathrm {Xe}$ NEXT 4
NOVELLA
2022
$ 0.771 {}^{+0.008}_{-0.006} {}^{+0.012}_{-0.015} $ ${}^{130}\mathrm {Te}$ CUORE 5
ADAMS
2021
$ (7.12 {}^{+0.18}_{-0.14} \pm0.10) \times 10^{-3} $ ${}^{100}\mathrm {Mo}$ CUPID-Mo 6
ARMENGAUD
2020
$ 18 \pm5 \pm1 $ ${}^{124}\mathrm {Xe}$ 2${{\mathit \nu}}$DEC XENON1T 7
APRILE
2019E
$ (6.8 \pm0.01 {}^{+0.38}_{-0.40}) \times 10^{-3} $ ${}^{100}\mathrm {Mo}$ NEMO-3 8
ARNOLD
2019
$ 0.0860 \pm0.0003 {}^{+0.0019}_{-0.0013} $ ${}^{82}\mathrm {Se}$ CUPID-0 9
AZZOLINI
2019B
$ 0.0939 \pm0.0017 \pm0.0058 $ ${}^{82}\mathrm {Se}$ NEMO-3 10
ARNOLD
2018
$ 0.0263 {}^{+0.0011}_{-0.0012} $ ${}^{116}\mathrm {Cd}$ AURORA 11
BARABASH
2018
$ \text{> 0.87} $ ${}^{134}\mathrm {Xe}$ EXO-200 12
ALBERT
2017C
$ 0.82 \pm0.02 \pm0.06 $ ${}^{130}\mathrm {Te}$ CUORE-0 13
ALDUINO
2017
$ (6.90 \pm0.15 \pm0.37) \times 10^{-3} $ ${}^{100}\mathrm {Mo}$ CUPID 14
ARMENGAUD
2017
$ 0.0274 \pm0.0004 \pm0.0018 $ ${}^{116}\mathrm {Cd}$ NEMO-3 15
ARNOLD
2017
$ 0.064 {}^{+0.007}_{-0.006} {}^{+0.012}_{-0.009} $ ${}^{48}\mathrm {Ca}$ NEMO-3 16
ARNOLD
2016
$ (9.34 \pm0.22 {}^{+0.62}_{-0.60}) \times 10^{-3} $ ${}^{150}\mathrm {Nd}$ NEMO-3 17
ARNOLD
2016A
$ 1.926 \pm0.094 $ ${}^{76}\mathrm {Ge}$ GERDA 18
AGOSTINI
2015A
$ (6.93 \pm0.04) \times 10^{-3} $ ${}^{100}\mathrm {Mo}$ NEMO-3 19
ARNOLD
2015
$ 2.165 \pm0.016 \pm0.059 $ ${}^{136}\mathrm {Xe}$ EXO-200 20
ALBERT
2014
$ 9.2 {}^{+5.5}_{-2.6} \pm1.3 $ ${}^{78}\mathrm {Kr}$ BAKSAN 21
GAVRILYAK
2013
$ 2.38 \pm0.02 \pm0.14 $ ${}^{136}\mathrm {Xe}$ KamLAND-Z 22
GANDO
2012A
$ 0.7 \pm0.09 \pm0.11 $ ${}^{130}\mathrm {Te}$ NEMO-3 23
ARNOLD
2011
$ 0.0235 \pm0.0014 \pm0.0016 $ ${}^{96}\mathrm {Zr}$ NEMO-3 24
ARGYRIADES
2010
$ 0.69 {}^{+0.10}_{-0.08} \pm0.07 $ ${}^{100}\mathrm {Mo}$ $0{}^{+} \rightarrow 0{}^{+}_{1}$ ${}^{}\mathrm {Ge}$ coinc. 25
BELLI
2010
$ 0.57 {}^{+0.13}_{-0.09} \pm0.08 $ ${}^{100}\mathrm {Mo}$ $0{}^{+} \rightarrow 0{}^{+}_{1}$ NEMO-3 26
ARNOLD
2007
$ 0.096 \pm0.003 \pm0.010 $ ${}^{82}\mathrm {Se}$ NEMO-3 27
ARNOLD
2005A
$ 0.029 {}^{+0.004}_{-0.003} $ ${}^{116}\mathrm {Cd}$ ${}^{}\mathrm {Cd}WO_{4}$ sc. 28
DANEVICH
2003
1  ADAMS 2022B derive the 2 ${{\mathit \nu}}{{\mathit \beta}}{{\mathit \beta}}$ half-life of ${}^{128}\mathrm {Te}$ from data of the CUORE bolometric calorimeter and the half-live ratio for ${}^{130}\mathrm {Te}$ $/$ ${}^{128}\mathrm {Te}$ reported in BERNATOWICZ 1992 .
2  APRILE 2022A report an improved ${}^{124}\mathrm {Xe}$ 2${{\mathit \nu}}$DEC half-life measurement for ${}^{124}\mathrm {Xe}$, using data collected by the XENON1T detector with an isotopically not enriched Xe target. The analyzed ${}^{124}\mathrm {Xe}$ exposure is 0.87 kg$\cdot{}$yr. The statistical significance of the signal is 7.0 sigma. The stated half-life considers captures from the K shell up to the N5 shell.This result supersedes APRILE 2019E, which exclusively considered captures from the K shell.
3  APRILE 2022B use data collected by the XENONnT dark matter experiment to derive an improved ${}^{124}\mathrm {Xe}$ 2${{\mathit \nu}}$DEC half-life measurement for ${}^{124}\mathrm {Xe}$. This result supersedes APRILE 2022A.
4  NOVELLA 2022 report on a high-pressure gas TPC at Canfranc underground laboratory, filled with 3.5 kg (fiducial) xenon gas, used to measure the 2${{\mathit \nu}}$ ${{\mathit \beta}}{{\mathit \beta}}$ decay of ${}^{136}\mathrm {Xe}$. Topological track reconstruction is utilized in the data analysis. The measurement is based on comparing runs with isotopically enriched and depleted xenon. Other measurements with smaller error exist.
5  ADAMS 2021 use 102.7 kg yr of ${}^{130}\mathrm {Te}$ exposure, collected by the CUORE bolometric detector at LNGS, to perform the most precise measurement of 2${{\mathit \nu}}$ ${{\mathit \beta}}{{\mathit \beta}}$ decay of this nuclide to date. The dataset is more than 10-times that used by the CUORE-0 experiment. Supersedes ALDUINO 2017 .
6  ARMENGAUD 2020 use the Li$_{2}{}^{100}\mathrm {Mo}O_{4}$ scintillating bolometers to determine the half-life of the 2${{\mathit \nu}}$ ${{\mathit \beta}}{{\mathit \beta}}$ decay of ${}^{100}\mathrm {Mo}$. The total exposure was 42.235 kg$\cdot{}$d. The single-state dominance for this decay is favored at $>$ 3 $\sigma $.
7  APRILE 2019E report first measurement of two-neutrino double electron capture in ${}^{124}\mathrm {Xe}$ using the XENON1T detector with a 0.73 t-yr exposure. An excess of $126$ $\pm29$ events is observed at $64.3$ $\pm0.6$ keV decay energy, corresponding to $\sqrt {\Delta {{\mathit \chi}^{2}} }$ = 4.4 with respect to the background-only hypothesis.
8  ARNOLD 2019 use the NEMO-3 tracking calorimeter with 34.3 kg y exposure to determine the 2${{\mathit \nu}}$ ${{\mathit \beta}}{{\mathit \beta}}$ half-life of ${}^{100}\mathrm {Mo}$. Supersedes ARNOLD 2015 .
9  AZZOLINI 2019B use the CUPID-0 experiment, utilizing ZnSe bolometers and an exposure of 9.95 kg$\cdot{}$yr of ${}^{}\mathrm {Zn}{}^{82}\mathrm {Se}$, to determine the half-life of the 2${{\mathit \nu}}$ ${{\mathit \beta}}{{\mathit \beta}}$ decay of ${}^{82}\mathrm {Se}$. The analysis provides evidence for single state dominance showing that the higher state dominance is disfavored at the level of 5.5 ${{\mathit \sigma}}$ .
10  ARNOLD 2018 use the NEMO-3 tracking detector to determine the 2 ${{\mathit \nu}}{{\mathit \beta}}{{\mathit \beta}}$ half-life of ${}^{82}\mathrm {Se}$. 0.93 kg of ${}^{82}\mathrm {Se}$ was observed for 5.25 y. The half-life value was obtained based on the single-state-dominance (SSD) hypothesis, preferred in this case by about 2 $\sigma $. Supersedes ARNOLD 2005A.
11  BARABASH 2018 use 1.162 kg of ${}^{116}\mathrm {Cd}WO_{4}$ scintillating crystals to obtain this value. Supersedes DANEVICH 2003 with analogous source and agrees with ARNOLD 2017 with the NEMO-3 detector.
12  ALBERT 2017C uses the EXO-200 detector that contains $19.098$ $\pm0.014\%$ admixture of ${}^{134}\mathrm {Xe}$ to search for the 2${{\mathit \nu}}$ ${{\mathit \beta}}{{\mathit \beta}}$ decay mode. The exposure is 29.6 kg$\cdot{}$year. The median sensitivity is $1.2 \times 10^{21}$ years.
13  ALDUINO 2017 use the CUORE-0 detector containing 10.8 kg of ${}^{130}\mathrm {Te}$ in 52 crystals of TeO$_{2}$. The exposure was 9.3 kg yr of ${}^{130}\mathrm {Te}$. This is a more accurate rate determination than in ARNOLD 2011 and BARABASH 2011A.
14  ARMENGAUD 2017 use $185.9$ $\pm0.1$ g crystal of Li$_{2}{}^{100}\mathrm {Mo}{}^{}\mathrm {O}_{4}$ to determine the ${}^{100}\mathrm {Mo}$ 2${{\mathit \nu}}$ ${{\mathit \beta}}{{\mathit \beta}}$ half-life. The exposure was of $1303$ $\pm26$ hours only, using novel technique.
15  ARNOLD 2017 use the NEMO-3 tracking calorimeter, containing 410 grams of enriched ${}^{116}\mathrm {Cd}$ exposed for 5.26 years, to determine the half-life value.
16  ARNOLD 2016 use the NEMO-3 detector and a source of 6.99 g of ${}^{48}\mathrm {Ca}$. The half-life is based on 36.7 g year exposure. It is consistent, although somewhat longer, than the previous determinations of the half-life. Supersedes BARABASH 2011A.
17  ARNOLD 2016A use the NEMO-3 tracking calorimeter, containing 36.6 g of ${}^{150}\mathrm {Nd}$ exposed for 1918.5 days, to determine the half-life. Supersedes ARGYRIADES 2009 .
18  AGOSTINI 2015A use 17.9 kg yr exposure of the GERDA calorimeter to derive an improved measurement of the 2${{\mathit \nu}}{{\mathit \beta}}{{\mathit \beta}}$ decay half life of ${}^{76}\mathrm {Ge}$.
19  ARNOLD 2015 use the NEMO-3 tracking calorimeter with 34.3 kg yr exposure to determine the 2${{\mathit \nu}}{{\mathit \beta}}{{\mathit \beta}}$-half life of ${}^{100}\mathrm {Mo}$. Supersedes ARNOLD 2005A and ARNOLD 2004 .
20  ALBERT 2014 use the EXO-200 tracking detector for a re-measurement of the 2${{\mathit \nu}}{{\mathit \beta}}{{\mathit \beta}}$-half life of ${}^{136}\mathrm {Xe}$. A nuclear matrix element of $0.0218$ $\pm0.0003$ MeV${}^{-1}$ is derived from this data. Supersedes ACKERMAN 2011 .
21  GAVRILYAK 2013 use a proportional counter filled with ${}^{}\mathrm {Kr}$ gas to search for the 2${{\mathit \nu}}$2K decay of ${}^{78}\mathrm {Kr}$. Data with the enriched and depleted ${}^{}\mathrm {Kr}$ were used to determine signal and background. A 2.5${{\mathit \sigma}}$ excess of events obtained with the enriched sample is interpreted as an indication for the presence of this decay.
22  GANDO 2012A use a modification of the existing KamLAND detector. The ${{\mathit \beta}}{{\mathit \beta}}$ decay source/detector is 13 tons of enriched ${}^{136}\mathrm {Xe}$-loaded scintillator contained in an inner balloon. The 2${{\mathit \nu}}{{\mathit \beta}}{{\mathit \beta}}$ decay rate is derived from the fit to the spectrum between 0.5 and 4.8 MeV. This result is in agreement with ACKERMAN 2011 .
23  ARNOLD 2011 use enriched ${}^{130}\mathrm {Te}$ in the NEMO-3 detector to measure the 2 ${{\mathit \nu}}$ ${{\mathit \beta}{\mathit \beta}}$ decay rate. This result is in agreement with, but more accurate than ARNABOLDI 2003 .
24  ARGYRIADES 2010 use $9.4$ $\pm0.2$ g of ${}^{96}\mathrm {Zr}$ in NEMO-3 detector and identify its 2${{\mathit \nu}}{{\mathit \beta}}{{\mathit \beta}}$ decay. The result is in agreement and supersedes ARNOLD 1999 .
25  BELLI 2010 use enriched ${}^{100}\mathrm {Mo}$ with 4 HP ${}^{}\mathrm {Ge}$ detectors to record the 590.8 and 539.5 keV ${{\mathit \gamma}}$ rays from the decay of the 0${}^{+}_{1}$ state in ${}^{100}\mathrm {Ru}$ both in singles and coincidences. This result confirms the measurement of KIDD 2009 and ARNOLD 2007 and supersedes them.
26  First exclusive measurement of 2${{\mathit \nu}}$-decay to the first excited 0${}^{+}_{1}$-state of daughter nucleus. ARNOLD 2007 use the NEMO-3 tracking calorimeter to detect all particles emitted in decay. Result agrees with the inclusive ( 0 ${{\mathit \nu}}{+}$ 2 ${{\mathit \nu}}$ ) measurement of DEBRAECKELEER 2001 .
27  ARNOLD 2005A use the NEMO-3 tracking detector to determine the 2 ${{\mathit \nu}}{{\mathit \beta}}{{\mathit \beta}}$ half-life of ${}^{82}\mathrm {Se}$ with high statistics and low background (389 days of data taking). Supersedes ARNOLD 2004 .
28  DANEVICH 2003 is calorimetric measurement of 2${{\mathit \nu}}{{\mathit \beta}}{{\mathit \beta}}$ ground state decay of ${}^{116}\mathrm {Cd}$ using enrichedCdWO$_{4}$ scintillators. Agrees with EJIRI 1995 and ARNOLD 1996 . Supersedes DANEVICH 2000 .
References:
ADAMS 2022B
PRL 129 222501 New Direct Limit on Neutrinoless Double Beta Decay Half-Life of Te128 with CUORE
APRILE 2022B
PRL 129 161805 Search for New Physics in Electronic Recoil Data from XENONnT
APRILE 2022A
PR C106 024328 Double-Weak Decays of $^{124}$Xe and $^{136}$Xe in the XENON1T and XENONnT Experiments
NOVELLA 2022
PR C105 055501 Measurement of the Xe136 two-neutrino double-?-decay half-life via direct background subtraction in NEXT
ADAMS 2021
PRL 126 171801 Measurement of the $2\nu\beta\beta$ Decay Half-Life of $^{130}\mathrm{Te}$ with CUORE
ARMENGAUD 2020
EPJ C80 674 Precise measurement of $2\nu \beta \beta $ decay of $^{100}$Mo with the CUPID-Mo detection technology
APRILE 2019E
NAT 568 532 Observation of two-neutrino double electron capture in $^{124}$Xe with XENON1T
ARNOLD 2019
EPJ C79 440 Detailed studies of $^{100}$Mo two-neutrino double beta decay in NEMO-3
AZZOLINI 2019B
PRL 123 262501 Evidence of Single State Dominance in the Two-Neutrino Double-$\beta$ Decay of $^{82}$Se with CUPID-0
ARNOLD 2018
EPJ C78 821 Final results on ${}^\mathbf 82 \hbox {Se}$ double beta decay to the ground state of ${}^\mathbf 82 \hbox {Kr}$ from the NEMO-3 experiment
BARABASH 2018
PR D98 092007 Final results of the Aurora experiment to study $2\beta$ decay of $^{116}\mathrm{Cd}$ with enriched $^{116}\mathrm{Cd}{\mathrm{WO}}_{4}$ crystal scintillators
ALBERT 2017C
PR D96 092001 Searches for Double Beta Decay of ${}^{134}\mathrm {Xe}$ with EXO-200
ALDUINO 2017
EPJ C77 13 Measurement of the Two-Neutrino Double-Beta Decay Half-Life of ${}^{130}\mathrm {Te}$ with the CUORE-0 Experiment
ARMENGAUD 2017
EPJ C77 785 Development of ${}^{100}\mathrm {Mo}$-containing Scintillating Bolometers for a High-sensitivity Neutrinoless Double-beta Decay Search
ARNOLD 2017
PR D95 012007 Measurement of the 2${{\mathit \nu}}{{\mathit \beta}}{{\mathit \beta}}$ Decay Half-Life and Search for the 0${{\mathit \nu}}\beta \beta $ Decay of ${}^{116}\mathrm {Cd}$ with the NEMO-3 Detector
ARNOLD 2016A
PR D94 072003 Measurement of the 2${{\mathit \nu}}{{\mathit \beta}}{{\mathit \beta}}$ Decay Half-Life of ${}^{150}\mathrm {Nd}$ and a Search for 0${{\mathit \nu}}{{\mathit \beta}}{{\mathit \beta}}$ Decay Processes with the Full Exposure from the NEMO-3 Detector
ARNOLD 2016
PR D93 112008 Measurement of the Double-Beta Decay Half-Life and Search for the Neutrinoless Double-Beta Decay of ${}^{48}\mathrm {Ca}$ with the NEMO-3 Detector
AGOSTINI 2015A
EPJ C75 416 Results on ${{\mathit \beta}}{{\mathit \beta}}$ Decay with Emission of Two Neutrinos or Majorons in ${}^{76}\mathrm {Ge}$ from GERDA Phase I
ARNOLD 2015
PR D92 072011 Results of the Search for Neutrinoless Double-${{\mathit \beta}}$ Decay in ${}^{100}\mathrm {Mo}$ with the NEMO-3 Experiment
ALBERT 2014
PR C89 015502 An Improved Measurement of the 2${{\mathit \nu}}{{\mathit \beta}}{{\mathit \beta}}$ Half-life of ${}^{136}\mathrm {Xe}$ with EXO-200
GAVRILYAK 2013
PR C87 035501 Indications of 2${{\mathit \nu}}2{{\mathit K}}$ Capture in ${}^{78}\mathrm {Kr}$
GANDO 2012A
PR C85 045504 Measurement of the Double-${{\mathit \beta}}$ Decay Half-Life of ${}^{136}\mathrm {Xe}$ with the KamLAND-Zen Experiment
ARNOLD 2011
PRL 107 062504 Measurement of the ${{\mathit \beta}}{{\mathit \beta}}$ Decay Half-Life of ${}^{130}\mathrm {Te}$ with the NEMO-3 Detector
ARGYRIADES 2010
NP A847 168 Measurement of the Two Neutrino Double $\beta $ Decay Half-Life of ${}^{96}\mathrm {Zr}$ with the NEMO-3 Detector
BELLI 2010
NP A846 143 New Observation of 2${{\mathit \beta}}2{{\mathit \nu}}$ Decay of ${}^{100}\mathrm {Mo}$ to the 0${}^{+}_{1}$ Level of ${}^{100}\mathrm {Ru}$ in the ARMONIA Experiment
ARNOLD 2007
NP A781 209 Measurement of Double beta Decay of ${}^{100}\mathrm {Mo}$ to Excited States in the NEMO-3 Experiment
ARNOLD 2005A
PRL 95 182302 First Results of the Search for Neutrinoless Double-Beta Decay with the NEMO 3 Detector
DANEVICH 2003
PR C68 035501 Search for 2$\beta $ Decay of Cadmium and Tungsten Isotopes: Final Results of the Solotvina Experiment