Astrophysical Limits on Neutrino MASS for ${\mathit m}_{{{\mathit \nu}}}$ $>$ 1 GeV

INSPIRE   JSON  (beta) PDGID:
S077L0


VALUE (GeV) CL% DOCUMENT ID TECN  COMMENT
• • We do not use the following data for averages, fits, limits, etc. • •
$\text{none 60 - 115}$ 1
FARGION
1995
ASTR Dirac
$\text{none 9.2 - 2000}$ 2
GARCIA
1995
COSM Nucleosynthesis
$\text{none 26 - 4700}$ 2
BECK
1994
COSM Dirac
$\text{none 6 - hundreds}$ 3, 4
MORI
1992B
KAM2 Dirac neutrino
$\text{none 24 - hundreds}$ 3, 4
MORI
1992B
KAM2 Majorana neutrino
$\text{none 10 - 2400}$ 90 5
REUSSER
1991
CNTR HPGe search
$\text{none 3 - 100}$ 90
SATO
1991
KAM2 Kamiokande II
6
ENQVIST
1989
COSM
$\text{none 12-1400}$ 2
CALDWELL
1988
COSM Dirac ${{\mathit \nu}}$
$\text{none 4-16}$ 90 3, 2
OLIVE
1988
COSM Dirac ${{\mathit \nu}}$
$\text{none 4-35}$ 90
OLIVE
1988
COSM Majorana ${{\mathit \nu}}$
$\text{>4.2 to 4.7}$
SREDNICKI
1988
COSM Dirac ${{\mathit \nu}}$
$\text{>5.3 to 7.4}$
SREDNICKI
1988
COSM Majorana ${{\mathit \nu}}$
$\text{none 20-1000}$ 95 2
AHLEN
1987
COSM Dirac ${{\mathit \nu}}$
$>4.1$
GRIEST
1987
COSM Dirac ${{\mathit \nu}}$
1  FARGION 1995 bound is sensitive to assumed ${{\mathit \nu}}$ concentration in the Galaxy. See also KONOPLICH 1994.
2  These results assume that neutrinos make up dark matter in the galactic halo.
3  Limits based on annihilations in the sun and are due to an absence of high energy neutrinos detected in underground experiments.
4  MORI 1992B results assume that neutrinos make up dark matter in the galactic halo. Limits based on annihilations in earth are also given.
5  REUSSER 1991 uses existing ${{\mathit \beta}}{{\mathit \beta}}$ detector (see FISHER 1989) to search for CDM Dirac neutrinos.
6  ENQVIST 1989 argue that there is no cosmological upper bound on heavy neutrinos.
References