Limits on $\vert \mathit U_{{{\mathit e}}\mathit x}\vert ^2$ as Function of ${\mathit m}_{{{\mathit \nu}_{{{x}}}}}$

Searches for Decays of Massive ${{\mathit \nu}}$

INSPIRE   JSON  (beta) PDGID:
S077U1C
Limits on $\vert \mathit U_{{{\mathit e}}\mathit x}\vert ^2$ as function of ${\mathit m}_{{{\mathit \nu}_{{{x}}}}}$
VALUE CL% DOCUMENT ID TECN  COMMENT
• • We do not use the following data for averages, fits, limits, etc. • •
$<1.6 \times 10^{-4}$ 90 1
BACK
2003A
CNTR ${\mathit m}_{{{\mathit \nu}_{{{x}}}}}$ = 4 MeV
$<4.5 \times 10^{-5}$ 90 1
BACK
2003A
CNTR ${\mathit m}_{{{\mathit \nu}_{{{x}}}}}$ = 7 MeV
$<3.8 \times 10^{-5}$ 90 1
BACK
2003A
CNTR ${\mathit m}_{{{\mathit \nu}_{{{x}}}}}$ = 10 MeV
$<1.5 \times 10^{-3}$ 95
ACHARD
2001
L3 ${\mathit m}_{{{\mathit \nu}_{{{x}}}}}$=80 GeV
$<0.02$ 95
ACHARD
2001
L3 ${\mathit m}_{{{\mathit \nu}_{{{x}}}}}$=175 GeV
$<0.3$ 95
ACHARD
2001
L3 ${\mathit m}_{{{\mathit \nu}_{{{x}}}}}$=200 GeV
$<4 \times 10^{-3}$ 95
ACCIARRI
1999K
L3 ${\mathit m}_{{{\mathit \nu}_{{{x}}}}}$=80 GeV
$<0.05$ 95
ACCIARRI
1999K
L3 ${\mathit m}_{{{\mathit \nu}_{{{x}}}}}$= 175 GeV
$<2 \times 10^{-5}$ 95 2
ABREU
1997I
DLPH ${\mathit m}_{{{\mathit \nu}_{{{x}}}}}$=6 GeV
$<3 \times 10^{-5}$ 95 2
ABREU
1997I
DLPH ${\mathit m}_{{{\mathit \nu}_{{{x}}}}}$=50 GeV
$<1.8 \times 10^{-3}$ 90 3
HAGNER
1995
MWPC ${\mathit m}_{{{\mathit \nu}_{{{h}}}}}$ = $1.5$ MeV
$<2.5 \times 10^{-4}$ 90 3
HAGNER
1995
MWPC ${\mathit m}_{{{\mathit \nu}_{{{h}}}}}$ = 4 MeV
$<4.2 \times 10^{-3}$ 90 3
HAGNER
1995
MWPC ${\mathit m}_{{{\mathit \nu}_{{{h}}}}}$ = 9 MeV
$<1 \times 10^{-5}$ 90 4
BARANOV
1993
${\mathit m}_{{{\mathit \nu}_{{{x}}}}}$=100 MeV
$<1 \times 10^{-6}$ 90 4
BARANOV
1993
${\mathit m}_{{{\mathit \nu}_{{{x}}}}}$= 200 MeV
$<3 \times 10^{-7}$ 90 4
BARANOV
1993
${\mathit m}_{{{\mathit \nu}_{{{x}}}}}$= 300 MeV
$<2 \times 10^{-7}$ 90 4
BARANOV
1993
${\mathit m}_{{{\mathit \nu}_{{{x}}}}}$=400 MeV
$<6.2 \times 10^{-8}$ 95
ADEVA
1990S
L3 ${\mathit m}_{{{\mathit \nu}_{{{x}}}}}$=20 GeV
$<5.1 \times 10^{-10}$ 95
ADEVA
1990S
L3 ${\mathit m}_{{{\mathit \nu}_{{{x}}}}}$=40 GeV
$\text{all values ruled out}$ 95 5
BURCHAT
1990
MRK2 ${\mathit m}_{{{\mathit \nu}_{{{x}}}}}$ $<$ $19.6$ GeV
$<1 \times 10^{-10}$ 95 5
BURCHAT
1990
MRK2 ${\mathit m}_{{{\mathit \nu}_{{{x}}}}}$= $22$ GeV
$<1 \times 10^{-11}$ 95 5
BURCHAT
1990
MRK2 ${\mathit m}_{{{\mathit \nu}_{{{x}}}}}$= $41$ GeV
$\text{all values ruled out}$ 95
DECAMP
1990F
ALEP ${\mathit m}_{{{\mathit \nu}_{{{x}}}}}$= $25.0-42.7$ GeV
$<1 \times 10^{-13}$ 95
DECAMP
1990F
ALEP ${\mathit m}_{{{\mathit \nu}_{{{x}}}}}$= $42.7-45.7$ GeV
$<5 \times 10^{-3}$ 90
AKERLOF
1988
HRS ${\mathit m}_{{{\mathit \nu}_{{{x}}}}}=1.8$ GeV
$<2 \times 10^{-5}$ 90
AKERLOF
1988
HRS ${\mathit m}_{{{\mathit \nu}_{{{x}}}}}$=4 GeV
$<3 \times 10^{-6}$ 90
AKERLOF
1988
HRS ${\mathit m}_{{{\mathit \nu}_{{{x}}}}}$=6 GeV
$<1.2 \times 10^{-7}$ 90
BERNARDI
1988
CNTR ${\mathit m}_{{{\mathit \nu}_{{{x}}}}}$=100 MeV
$<1 \times 10^{-8}$ 90
BERNARDI
1988
CNTR ${\mathit m}_{{{\mathit \nu}_{{{x}}}}}$=200 MeV
$<2.4 \times 10^{-9}$ 90
BERNARDI
1988
CNTR ${\mathit m}_{{{\mathit \nu}_{{{x}}}}}$=300 MeV
$<2.1 \times 10^{-9}$ 90
BERNARDI
1988
CNTR ${\mathit m}_{{{\mathit \nu}_{{{x}}}}}$=400 MeV
$<0.02$ 68 6
OBERAUER
1987
${\mathit m}_{{{\mathit \nu}_{{{x}}}}}=1.5$ MeV
$<8 \times 10^{-4}$ 68 6
OBERAUER
1987
${\mathit m}_{{{\mathit \nu}_{{{x}}}}}=4.0$ MeV
$<8 \times 10^{-3}$ 90
BADIER
1986
CNTR ${\mathit m}_{{{\mathit \nu}_{{{x}}}}}$=400 MeV
$<8 \times 10^{-5}$ 90
BADIER
1986
CNTR ${\mathit m}_{{{\mathit \nu}_{{{x}}}}}=1.7$ GeV
$<8 \times 10^{-8}$ 90
BERNARDI
1986
CNTR ${\mathit m}_{{{\mathit \nu}_{{{x}}}}}$=100 MeV
$<4 \times 10^{-8}$ 90
BERNARDI
1986
CNTR ${\mathit m}_{{{\mathit \nu}_{{{x}}}}}$=200 MeV
$<6 \times 10^{-9}$ 90
BERNARDI
1986
CNTR ${\mathit m}_{{{\mathit \nu}_{{{x}}}}}$=400 MeV
$<3 \times 10^{-5}$ 90
DORENBOSCH
1986
CNTR ${\mathit m}_{{{\mathit \nu}_{{{x}}}}}$=150 MeV
$<1 \times 10^{-6}$ 90
DORENBOSCH
1986
CNTR ${\mathit m}_{{{\mathit \nu}_{{{x}}}}}$=500 MeV
$<1 \times 10^{-7}$ 90
DORENBOSCH
1986
CNTR ${\mathit m}_{{{\mathit \nu}_{{{x}}}}}=1.6$ GeV
$<7 \times 10^{-7}$ 90 7
COOPER-SARKAR
1985
HLBC ${\mathit m}_{{{\mathit \nu}_{{{x}}}}}=0.4$ GeV
$<8 \times 10^{-8}$ 90 7
COOPER-SARKAR
1985
HLBC ${\mathit m}_{{{\mathit \nu}_{{{x}}}}}=1.5$ GeV
$<0.01$ 90 8
BERGSMA
1983B
CNTR ${\mathit m}_{{{\mathit \nu}_{{{x}}}}}$=10 MeV
$<1 \times 10^{-5}$ 90 8
BERGSMA
1983B
CNTR ${\mathit m}_{{{\mathit \nu}_{{{x}}}}}$=110 MeV
$<6 \times 10^{-7}$ 90 8
BERGSMA
1983B
CNTR ${\mathit m}_{{{\mathit \nu}_{{{x}}}}}$=410 MeV
$<1 \times 10^{-5}$ 90
GRONAU
1983
${\mathit m}_{{{\mathit \nu}_{{{x}}}}}$=160 MeV
$<1 \times 10^{-6}$ 90
GRONAU
1983
${\mathit m}_{{{\mathit \nu}_{{{x}}}}}$=480 MeV
1  BACK 2003A searched for heavy neutrinos emitted from ${}^{8}\mathrm {B}$ decay in the Sun using the decay ${{\mathit \nu}_{{{h}}}}$ $\rightarrow$ ${{\mathit \nu}_{{{e}}}}{{\mathit e}^{+}}{{\mathit e}^{-}}$ in the Counting Test Facility (the prototype of the Borexino detector) and obtained limits on heavy neutrino admixture for the ${{\mathit \nu}_{{{h}}}}$ mass range $1.1 - 12$ MeV.
2  ABREU 1997I long-lived ${{\mathit \nu}_{{{x}}}}$ analysis. Short-lived analysis extends limit to lower masses with decreasing sensitivity except at $3.5$ GeV, where the limit is the same as at 6 GeV.
3  HAGNER 1995 obtain limits on heavy neutrino admixture from the decay ${{\mathit \nu}_{{{h}}}}$ $\rightarrow$ ${{\mathit \nu}_{{{e}}}}{{\mathit e}^{+}}{{\mathit e}^{-}}$ at a nuclear reactor for the ${{\mathit \nu}_{{{h}}}}$ mass range $2 - 9$ MeV.
4  BARANOV 1993 is a search for neutrino decays into ${{\mathit e}^{+}}{{\mathit e}^{-}}{{\mathit \nu}_{{{e}}}}$ using a beam dump experiment at the 70 GeV Serpukhov proton synchrotron. The limits are not as good as those achieved earlier by BERGSMA 1983 and BERNARDI 1986, BERNARDI 1988.
5  BURCHAT 1990 includes the analyses reported in JUNG 1990, ABRAMS 1989C, and WENDT 1987.
6  OBERAUER 1987 bounds from search for ${{\mathit \nu}}$ $\rightarrow$ ${{\mathit \nu}^{\,'}}{{\mathit e}}{{\mathit e}}$ decay mode using reactor (anti)neutrinos.
7  COOPER-SARKAR 1985 also give limits based on model-dependent assumptions for ${{\mathit \nu}_{{{\tau}}}}$ flux. We do not list these. Note that for this bound to be nontrivial, $\mathit x$ is not equal to 3, i.e. ${{\mathit \nu}_{{{x}}}}$ cannot be the dominant mass eigenstate in ${{\mathit \nu}_{{{\tau}}}}$ since ${\mathit m}_{{{\mathit \nu}_{{{3}}}}}$ $<$70 MeV (ALBRECHT 1985I). Also, of course, $\mathit x$ is not equal to 1 or 2, so a fourth generation would be required for this bound to be nontrivial.
8  BERGSMA 1983B also quote limits on $\vert \mathit U_{{{\mathit e}}3}\vert {}^{2}$ where the index 3 refers to the mass eigenstate dominantly coupled to the ${{\mathit \tau}}$. Those limits were based on assumptions about the ${{\mathit D}_{{{s}}}}$ mass and ${{\mathit D}_{{{s}}}}$ $\rightarrow$ ${{\mathit \tau}}{{\mathit \nu}_{{{\tau}}}}$ branching ratio which are no longer valid. See COOPER-SARKAR 1985.
References