${{\boldsymbol H}^{0}}$ SIGNAL STRENGTHS IN DIFFERENT CHANNELS

The ${{\mathit H}^{0}}$ signal strength in a particular final state ${{\mathit x}}{{\mathit x}}$ is given by the cross section times branching ratio in this channel normalized to the Standard Model (SM) value, $\sigma $ $\cdot{}$ B( ${{\mathit H}^{0}}$ $\rightarrow$ ${{\mathit x}}{{\mathit x}}$ ) $/$ ($\sigma $ $\cdot{}$ B( ${{\mathit H}^{0}}$ $\rightarrow$ ${{\mathit x}}{{\mathit x}}$ ))$_{{\mathrm {SM}}}$, for the specified mass value of ${{\mathit H}^{0}}$. For the SM predictions, see DITTMAIER 2011 , DITTMAIER 2012 , and HEINEMEYER 2013A. Results for fiducial and differential cross sections are also listed below.

${{\boldsymbol b}}{{\overline{\boldsymbol b}}}$ Final State INSPIRE search

VALUE DOCUMENT ID TECN  COMMENT
$\bf{ 0.95 \pm0.22}$ OUR AVERAGE
$1.20$ ${}^{+0.24}_{-0.23}$ ${}^{+0.34}_{-0.28}$ 1
AABOUD
2017BA
ATLS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit H}^{0}}{{\mathit W}}$ $/$ ${{\mathit Z}}{{\mathit X}}$ , ${{\mathit H}^{0}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}$ , 13 TeV
$0.70$ ${}^{+0.29}_{-0.27}$ 2, 3
AAD
2016AN
LHC ${{\mathit p}}{{\mathit p}}$ , 7, 8 TeV
$1.59$ ${}^{+0.69}_{-0.72}$ 4
AALTONEN
2013M
TEVA ${{\mathit p}}$ ${{\overline{\mathit p}}}$ $\rightarrow$ ${{\mathit H}^{0}}{{\mathit X}}$ , 1.96 TeV
• • • We do not use the following data for averages, fits, limits, etc. • • •
$2.3$ ${}^{+1.8}_{-1.6}$ 5
SIRUNYAN
2018E
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit H}^{0}}{{\mathit X}}$ , boosted, 13 TeV
$0.90$ $\pm0.18$ ${}^{+0.21}_{-0.19}$ 6
AABOUD
2017BA
ATLS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit H}^{0}}{{\mathit W}}$ $/$ ${{\mathit Z}}{{\mathit X}}$ , ${{\mathit H}^{0}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}$ , 7, 8, 13 TeV
$-0.8$ $\pm1.3$ ${}^{+1.8}_{-1.9}$ 7
AABOUD
2016X
ATLS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit H}^{0}}{{\mathit X}}$ , VBF, 8 TeV
$0.62$ $\pm0.37$ 3
AAD
2016AN
ATLS ${{\mathit p}}{{\mathit p}}$ , 7, 8 TeV
$0.81$ ${}^{+0.45}_{-0.43}$ 3
AAD
2016AN
CMS ${{\mathit p}}{{\mathit p}}$ , 7, 8 TeV
$0.63$ ${}^{+0.31}_{-0.30}$ ${}^{+0.24}_{-0.23}$ 8
AAD
2016K
ATLS ${{\mathit p}}{{\mathit p}}$ , 7, 8 TeV
$0.52$ $\pm0.32$ $\pm0.24$ 9
AAD
2015G
ATLS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit H}^{0}}{{\mathit W}}$ $/$ ${{\mathit Z}}{{\mathit X}}$ , 7, 8 TeV
$2.8$ ${}^{+1.6}_{-1.4}$ 10
KHACHATRYAN
2015Z
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit H}^{0}}{{\mathit X}}$ , VBF, 8 TeV
$1.03$ ${}^{+0.44}_{-0.42}$ 11
KHACHATRYAN
2015Z
CMS ${{\mathit p}}{{\mathit p}}$ , 8 TeV, combined
$1.0$ $\pm0.5$ 12
CHATRCHYAN
2014AI
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit H}^{0}}{{\mathit W}}$ $/$ ${{\mathit Z}}{{\mathit X}}$ , 7, 8 TeV
$1.72$ ${}^{+0.92}_{-0.87}$ 13
AALTONEN
2013L
CDF ${{\mathit p}}$ ${{\overline{\mathit p}}}$ $\rightarrow$ ${{\mathit H}^{0}}{{\mathit X}}$ , 1.96 TeV
$1.23$ ${}^{+1.24}_{-1.17}$ 14
ABAZOV
2013L
D0 ${{\mathit p}}$ ${{\overline{\mathit p}}}$ $\rightarrow$ ${{\mathit H}^{0}}{{\mathit X}}$ , 1.96 TeV
$0.5$ $\pm2.2$ 15
AAD
2012AI
ATLS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit H}^{0}}{{\mathit W}}$ $/$ ${{\mathit Z}}{{\mathit X}}$ , 7 TeV
16
AALTONEN
2012T
TEVA ${{\mathit p}}$ ${{\overline{\mathit p}}}$ $\rightarrow$ ${{\mathit H}^{0}}{{\mathit W}}$ $/$ ${{\mathit Z}}{{\mathit X}}$ , 1.96 TeV
$0.48$ ${}^{+0.81}_{-0.70}$ 17
CHATRCHYAN
2012N
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit H}^{0}}{{\mathit W}}$ $/$ ${{\mathit Z}}{{\mathit X}}$ , 7, 8 TeV
1  AABOUD 2017BA use 36.1 fb${}^{-1}$ at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. The quoted signal strength is given for ${\mathit m}_{{{\mathit H}^{0}}}$ = 125 GeV. They give ${\mathit \sigma (}$W H${)}\cdot{}{{\mathit B}}$( ${{\mathit H}^{0}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}$ ) = $1.08$ ${}^{+0.54}_{-0.47}$ pb and ${\mathit \sigma (}$Z H${)}\cdot{}{{\mathit B}}$( ${{\mathit H}^{0}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}$ ) = $0.57$ ${}^{+0.26}_{-0.23}$ pb.
2  AAD 2016AN perform fits to the ATLAS and CMS data at $\mathit E_{{\mathrm {cm}}}$ = 7 and 8 TeV. The signal strengths for individual production processes are $1.0$ $\pm0.5$ for ${{\mathit W}}{{\mathit H}^{0}}$ production, $0.4$ $\pm0.4$ for ${{\mathit Z}}{{\mathit H}^{0}}$ production, and $1.1$ $\pm1.0$ for ${{\mathit t}}{{\overline{\mathit t}}}{{\mathit H}^{0}}$ production.
3  AAD 2016AN: In the fit, relative production cross sections are fixed to those in the Standard Model. The quoted signal strength is given for ${\mathit m}_{{{\mathit H}^{0}}}$ = 125.09 GeV.
4  AALTONEN 2013M combine all Tevatron data from the CDF and D0 Collaborations with up to 10.0 fb${}^{-1}$ and 9.7 fb${}^{-1}$, respectively, of ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 1.96 TeV. The quoted signal strength is given for ${\mathit m}_{{{\mathit H}^{0}}}$ = 125 GeV.
5  SIRUNYAN 2018E use 35.9 fb${}^{-1}$ at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. The quoted signal strength is given for ${\mathit m}_{{{\mathit H}^{0}}}$ = 125 GeV. They measure ${{\mathit \sigma}}\cdot{}{{\mathit B}}$ for gluon fusion production of ${{\mathit H}^{0}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}$ with $p_T>$450 GeV, $\vert \eta \vert <$2.5 to be $74$ $\pm48$ ${}^{+17}_{-10}$ fb.
6  AABOUD 2017BA combine 7, 8 and 13 TeV analyses. The quoted signal strength is given for ${\mathit m}_{{{\mathit H}^{0}}}$ = 125 GeV.
7  AABOUD 2016X search for vector-boson fusion production of ${{\mathit H}^{0}}$ decaying to ${{\mathit b}}{{\overline{\mathit b}}}$ in 20.2 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV. The quoted signal strength is given for ${\mathit m}_{{{\mathit H}^{0}}}$ = 125 GeV.
8  AAD 2016K use up to 4.7 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 7 TeV and up to 20.3 fb${}^{-1}$ at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV. The quoted signal strength is given for ${\mathit m}_{{{\mathit H}^{0}}}$ = 125.36 GeV.
9  AAD 2015G use 4.7 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 7 TeV and 20.3 fb${}^{-1}$ at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV. The quoted signal strength is given for ${\mathit m}_{{{\mathit H}^{0}}}$ = 125.36 GeV.
10  KHACHATRYAN 2015Z search for vector-boson fusion production of ${{\mathit H}^{0}}$ decaying to ${{\mathit b}}{{\overline{\mathit b}}}$ in up to 19.8 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV. The quoted signal strength is given for ${\mathit m}_{{{\mathit H}^{0}}}$ = 125 GeV.
11  KHACHATRYAN 2015Z combined vector boson fusion, ${{\mathit W}}{{\mathit H}^{0}}$ , ${{\mathit Z}}{{\mathit H}^{0}}$ production, and ${{\mathit t}}{{\overline{\mathit t}}}{{\mathit H}^{0}}$ production results. The quoted signal strength is given for ${\mathit m}_{{{\mathit H}^{0}}}$ = 125 GeV.
12  CHATRCHYAN 2014AI use up to 5.1 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 7 TeV and up to 18.9 fb${}^{-1}$ at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV. The quoted signal strength is given for ${\mathit m}_{{{\mathit H}^{0}}}$ = 125 GeV. See also CHATRCHYAN 2014AJ.
13  AALTONEN 2013L combine all CDF results with $9.45 - 10.0$ fb${}^{-1}$ of ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 1.96 TeV. The quoted signal strength is given for ${\mathit m}_{{{\mathit H}^{0}}}$ = 125 GeV.
14  ABAZOV 2013L combine all D0 results with up to 9.7 fb${}^{-1}$ of ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 1.96 TeV. The quoted signal strength is given for ${\mathit m}_{{{\mathit H}^{0}}}$ = 125 GeV.
15  AAD 2012AI obtain results based on $4.6 - 4.8$ fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 7 TeV. The quoted signal strengths are given in their Fig. 10 for ${\mathit m}_{{{\mathit H}^{0}}}$ = 126 GeV. See also Fig. 13 of AAD 2012DA.
16  AALTONEN 2012T combine AALTONEN 2012Q, AALTONEN 2012R, AALTONEN 2012S, ABAZOV 2012O, ABAZOV 2012P, and ABAZOV 2012K. An excess of events over background is observed which is most significant in the region ${\mathit m}_{{{\mathit H}^{0}}}$ = $120 - 135$ GeV, with a local significance of up to 3.3 $\sigma $. The local significance at ${\mathit m}_{{{\mathit H}^{0}}}$ = 125 GeV is 2.8 $\sigma $, which corresponds to (${\mathit \sigma (}$ ${{\mathit H}^{0}}{{\mathit W}}{)}$ + ${\mathit \sigma (}$ ${{\mathit H}^{0}}{{\mathit Z}}{)}$) $\cdot{}$ B( ${{\mathit H}^{0}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}$ ) = ($0.23$ ${}^{+0.09}_{-0.08}$) pb, compared to the Standard Model expectation at ${\mathit m}_{{{\mathit H}^{0}}}$ = 125 GeV of $0.12$ $\pm0.01$ pb. Superseded by AALTONEN 2013M.
17  CHATRCHYAN 2012N obtain results based on 5.0 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$=7 TeV and 5.1 fb${}^{-1}$ at $\mathit E_{{\mathrm {cm}}}$=8 TeV. The quoted signal strength is given for ${\mathit m}_{{{\mathit H}^{0}}}$=125.5 GeV. See also CHATRCHYAN 2013Y.
  References:
SIRUNYAN 2018E
PRL 120 071802 Inclusive Search for a Highly Boosted Higgs Boson Decaying to a Bottom Quark-Antiquark Pair
AABOUD 2017BA
JHEP 1712 024 Evidence for the ${{\mathit H}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}$ Decay with the ATLAS Detector
AABOUD 2016X
JHEP 1611 112 Search for the Standard Model Higgs Boson Produced by Vector-Boson Fusion and Decaying to Bottom Quarks in $\sqrt {s }$ = 8 TeV ${{\mathit p}}{{\mathit p}}$ Collisions with the ATLAS Detector
AAD 2016K
EPJ C76 6 Measurements of the Higgs Boson Production and Decay Rates and Coupling Strengths using ${{\mathit p}}{{\mathit p}}$ Collision Data at $\sqrt {s }$ = 7 and 8 TeV in the ATLAS Experiment
AAD 2016AN
JHEP 1608 045 Measurements of the Higgs Boson Production and Decay Rates and Constraints on its Couplings from a Combined ATLAS and CMS Analysis of the LHC ${{\mathit p}}{{\mathit p}}$ Collision Data at $\sqrt {s }$ =7 and 8 TeV
AAD 2015G
JHEP 1501 069 Search for the ${\mathit {\mathit b}}{\mathit {\overline{\mathit b}}}$ Decay of the Standard Model Higgs Boson in Associated (${{\mathit W}}/{{\mathit Z}}){{\mathit H}}$ Production with the ATLAS Detector
KHACHATRYAN 2015Z
PR D92 032008 Search for the Standard Model Higgs Boson Produced through Vector Boson Fusion and Decaying to ${\mathit {\mathit b}}{\mathit {\overline{\mathit b}}}$
CHATRCHYAN 2014AI
PR D89 012003 Search for the Standard Model Higgs Boson Produced in Association with a ${{\mathit W}}$ or a ${{\mathit Z}}$ Boson and Decaying to Bottom Quarks
AALTONEN 2013M
PR D88 052014 Higgs Boson Studies at the Tevatron
AALTONEN 2013L
PR D88 052013 Combination of Searches for the Higgs Boson Using the Full CDF Data Set
ABAZOV 2013L
PR D88 052011 Combined Search for the Higgs Boson with the ${D0}$ Experiment
AAD 2012AI
PL B716 1 Observation of a New Particle in the Search for the Standard Model Higgs Boson with the ATLAS Detector at the LHC
AALTONEN 2012T
PRL 109 071804 Evidence for a Particle Produced in Association with Weak Bosons and Decaying to a Bottom-Antibottom Quark Pair in Higgs Boson Searches at the Tevatron
CHATRCHYAN 2012N
PL B716 30 Observation of a New Boson at a Mass of 125 GeV with the CMS Experiment at the LHC
CHATRCHYAN 2013Y
JHEP 1306 081 Observation of a New Boson with Mass Near 125 GeV in ${{\mathit p}}{{\mathit p}}$ Collisions at $\sqrt {s }$ = 7 and 8 TeV
CHATRCHYAN 2014AJ
NATP 10 557 Evidence for the Direct Decay of the 125 GeV Higgs Boson to Fermions
AAD 2012DA
SCI 338 1576 A Particle Consistent with the Higgs Boson Observed with the ATLAS Detector at the Large Hadron Collider
AALTONEN 2012Q
PRL 109 111803 Search for the Standard Model Higgs Boson Decaying to a ${\mathit {\mathit b}}{\mathit {\overline{\mathit b}}}$ Pair in Events with Two Oppositely Charged Leptons Using the Full CDF Data Set
AALTONEN 2012R
PRL 109 111804 Search for the Standard Model Higgs Boson Decaying to a ${\mathit {\mathit b}}{\mathit {\overline{\mathit b}}}$ Pair in Events with One Charged Lepton and Large Missing Transverse Energy Using the Full CDF Data Set
AALTONEN 2012S
PRL 109 111805 Search for the Standard Model Higgs Boson Decaying to a ${\mathit {\mathit b}}{\mathit {\overline{\mathit b}}}$ Pair in Events with No Charged Leptons and Large Missing Transverse Energy using the Full CDF Data Set
ABAZOV 2012O
PRL 109 121803 Search for the Standard Model Higgs Boson in ${{\mathit Z}}$ ${{\mathit H}}$ $\rightarrow$ ${{\mathit \ell}^{+}}{{\mathit \ell}^{-}}{{\mathit b}}{{\overline{\mathit b}}}$ Production with the ${D0}$ Detector in 9.7 ${\mathrm {fb}}{}^{-1}$ of ${{\mathit p}}{{\overline{\mathit p}}}$ Collisions at $\sqrt {s }$ = 1.96 TeV
ABAZOV 2012P
PRL 109 121804 Search for the Standard Model Higgs Boson in Associated ${{\mathit W}}{{\mathit H}}$ Production in 9.7 ${\mathrm {fb}}{}^{-1}$ of ${{\mathit p}}{{\overline{\mathit p}}}$ Collisions with the ${D0}$ Detector
ABAZOV 2012K
PL B716 285 Search for the Standard Model Higgs Boson in the ${{\mathit Z}}$ ${{\mathit H}}$ $\rightarrow$ ${{\mathit \nu}}{{\overline{\mathit \nu}}}{{\mathit b}}{{\overline{\mathit b}}}$ Channel in 9.5 ${\mathrm {fb}}{}^{-1}$ of ${{\mathit p}}{{\overline{\mathit p}}}$ Collisions at $\sqrt {s }$ = 7 TeV