${{\mathit H}}$ SIGNAL STRENGTHS IN DIFFERENT CHANNELS

The ${{\mathit H}}$ signal strength in a particular final state ${{\mathit x}}{{\mathit x}}$ is given by the cross section times branching ratio in this channel normalized to the Standard Model (SM) value, $\sigma $ $\cdot{}$ B( ${{\mathit H}}$ $\rightarrow$ ${{\mathit x}}{{\mathit x}}$ ) $/$ ($\sigma $ $\cdot{}$ B( ${{\mathit H}}$ $\rightarrow$ ${{\mathit x}}{{\mathit x}}$ ))$_{{\mathrm {SM}}}$, for the specified mass value of ${{\mathit H}}$. For the SM predictions, see DITTMAIER 2011 , DITTMAIER 2012 , and HEINEMEYER 2013A. Results for fiducial and differential cross sections are also listed below.

${{\mathit c}}{{\overline{\mathit c}}}$ Final State

INSPIRE   PDGID:
S126SCC
VALUE CL% DOCUMENT ID TECN  COMMENT
$\bf{ 8 \pm22}$ OUR AVERAGE  Error includes scale factor of 1.9.
$-9$ $\pm10$ $\pm11$ 1, 2
AAD
2022W
ATLS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit W}}{{\mathit H}}$ / ${{\mathit Z}}{{\mathit H}}$ , 13 TeV
$37$ $\pm17$ ${}^{+11}_{-9}$ 3
SIRUNYAN
2020AE
CMS ${{\mathit p}}{{\mathit p}}$ , 13 TeV
• • We do not use the following data for averages, fits, limits, etc. • •
$-9$ $\pm10$ $\pm12$ 1, 4
AAD
2022W
ATLS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit W}}{{\mathit H}}$ / ${{\mathit Z}}{{\mathit H}}$ , 13 TeV
$<110$ 95 5
AABOUD
2018M
ATLS ${{\mathit p}}{{\mathit p}}$ , 13 TeV
1  AAD 2022W search for ${{\mathit V}}{{\mathit H}}$ , ${{\mathit H}}$ $\rightarrow$ ${{\mathit c}}{{\overline{\mathit c}}}$ (${{\mathit V}}$ = ${{\mathit W}}$ , ${{\mathit Z}}$ ) using 139 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collision data at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. The results are given for ${\mathit m}_{{{\mathit H}}}$ = 125 GeV.
2  The analysis of ${{\mathit V}}{{\mathit H}}$ , ${{\mathit H}}$ $\rightarrow$ ${{\mathit c}}{{\overline{\mathit c}}}$ is combined with ${{\mathit V}}{{\mathit H}}$ , ${{\mathit H}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}$ (AAD 2021AB). The ratio |${{\mathit \kappa}_{{c}}}/{{\mathit \kappa}_{{b}}}$| is constrained to be less than 4.5 at 95$\%$ CL. See their Fig. 7.
3  SIRUNYAN 2020AE use 35.9 fb${}^{-1}$ at of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. The measured best fit value of ${\mathit \sigma (}$ ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit V}}{{\mathit H}}{)}\cdot{}$B( ${{\mathit H}}$ $\rightarrow$ ${{\mathit c}}{{\overline{\mathit c}}}$ ) is $2.40$ ${}^{+1.12}_{-1.11}{}^{+0.65}_{-0.61}$ pb (equivalent to $<$ 4.5 pb at 95$\%$ CL upper limit, i.e. 70 times the standard model), where ${{\mathit V}}$ is ${{\mathit W}}$ $\rightarrow$ ${{\mathit \ell}}{{\mathit \nu}}$ , ${{\mathit Z}}$ $\rightarrow$ ${{\mathit \ell}}{{\mathit \ell}}$ , or ${{\mathit Z}}$ $\rightarrow$ ${{\mathit \nu}}{{\mathit \nu}}$ (${{\mathit \ell}}$ = ${{\mathit e}}$ , ${{\mathit \mu}}$ ). The quoted values are given for ${\mathit m}_{{{\mathit H}}}$ = 125 GeV.
4  The upper limit at 95$\%$ CL is 26 times the SM prediction. See their Fig. 2. The constraint on the charm Yukawa coupling modifier ${{\mathit \kappa}_{{c}}}$ is measured to be $\vert {{\mathit \kappa}_{{c}}}\vert <$8.5 at 95$\%$ CL. See their Fig. 4.
5  AABOUD 2018M use 36.1 fb${}^{-1}$ at of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. The upper limit on ${\mathit \sigma (}$ ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit Z}}{{\mathit H}}{)}\cdot{}$B( ${{\mathit H}}$ $\rightarrow$ ${{\mathit c}}{{\overline{\mathit c}}}$ ) is 2.7 pb at 95$\%$ CL. This corresponds to 110 times the standard model. The quoted values are given for ${\mathit m}_{{{\mathit H}}}$ = 125 GeV.
References:
AAD 2022W
EPJ C82 717 Direct constraint on the Higgs-charm coupling from a search for Higgs boson decays into charm quarks with the ATLAS detector
SIRUNYAN 2020AE
JHEP 2003 131 A search for the standard model Higgs boson decaying to charm quarks
AABOUD 2018M
PRL 120 211802 Search for the Decay of the Higgs Boson to Charm Quarks with the ATLAS Experiment