${{\boldsymbol t}}{{\overline{\boldsymbol t}}}{{\boldsymbol H}^{0}}$ Production INSPIRE search

Signal strengh relative to the Standard Model cross section.
VALUE CL% DOCUMENT ID TECN  COMMENT
$2.3$ ${}^{+0.7}_{-0.6}$ 1, 2
AAD
2016AN
LHC ${{\mathit p}}{{\mathit p}}$ , 7, 8 TeV
• • • We do not use the following data for averages, fits, limits, etc. • • •
$1.7$ $\pm0.8$ 3
AAD
2016AL
ATLS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit H}^{0}}{{\mathit t}}{{\overline{\mathit t}}}{{\mathit X}}$ , 7, 8 TeV
$1.9$ ${}^{+0.8}_{-0.7}$ 2
AAD
2016AN
ATLS ${{\mathit p}}{{\mathit p}}$ , 7, 8 TeV
$2.9$ ${}^{+1.0}_{-0.9}$ 2
AAD
2016AN
CMS ${{\mathit p}}{{\mathit p}}$ , 7, 8 TeV
$1.81$ ${}^{+0.52}_{-0.50}$ ${}^{+0.58}_{-0.55}$ ${}^{+0.31}_{-0.12}$ 4
AAD
2016K
ATLS ${{\mathit p}}{{\mathit p}}$ , 7, 8 TeV
$1.4$ ${}^{+2.1}_{-1.4}$ ${}^{+0.6}_{-0.3}$ 5
AAD
2015
ATLS ${{\mathit p}}{{\mathit p}}$ , 7, 8 TeV
$1.5$ $\pm1.1$ 6
AAD
2015BC
ATLS ${{\mathit p}}{{\mathit p}}$ , 8 TeV
$2.1$ ${}^{+1.4}_{-1.2}$ 7
AAD
2015T
ATLS ${{\mathit p}}{{\mathit p}}$ , 8 TeV
$1.2$ ${}^{+1.6}_{-1.5}$ 8
KHACHATRYAN
2015AN
CMS ${{\mathit p}}{{\mathit p}}$ , 8 TeV
$2.8$ ${}^{+1.0}_{-0.9}$ 9
KHACHATRYAN
2014H
CMS ${{\mathit p}}{{\mathit p}}$ , 7, 8 TeV
$9.49$ ${}^{+6.60}_{-6.28}$ 10
AALTONEN
2013L
CDF ${{\mathit p}}{{\overline{\mathit p}}}$ , 1.96 TeV
$<5.8$ 95 11
CHATRCHYAN
2013X
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit H}^{0}}{{\mathit t}}{{\overline{\mathit t}}}{{\mathit X}}$
1  AAD 2016AN perform fits to the ATLAS and CMS data at $\mathit E_{{\mathrm {cm}}}$ = 7 and 8 TeV.
2  AAD 2016AN: In the fit, relative branching ratios are fixed to those in the Standard Model. The quoted signal strength is given for ${\mathit m}_{{{\mathit H}^{0}}}$ = 125.09 GeV.
3  AAD 2016AL search for ${{\mathit t}}{{\overline{\mathit t}}}{{\mathit H}^{0}}$ production with ${{\mathit H}^{0}}$ decaying to ${{\mathit \gamma}}{{\mathit \gamma}}$ in 4.5 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 7 TeV and ${{\mathit b}}{{\overline{\mathit b}}}$ , ${{\mathit \tau}}{{\mathit \tau}}$ , ${{\mathit \gamma}}{{\mathit \gamma}}$ , ${{\mathit W}}{{\mathit W}^{*}}$ , and ${{\mathit Z}}{{\mathit Z}^{*}}$ in 20.3 fb${}^{-1}$ at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV. The quoted signal strength is given for ${\mathit m}_{{{\mathit H}^{0}}}$ = 125 GeV. This paper combines the results of previous papers, and the new result of this paper only is: ${{\mathit \mu}}$ = $1.6$ $\pm2.6$.
4  AAD 2016K use up to 4.7 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 7 TeV and up to 20.3 fb${}^{-1}$ at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV. The third uncertainty in the measurement is theory systematics. The quoted signal strength is given for ${\mathit m}_{{{\mathit H}^{0}}}$ = 125.36 GeV.
5  AAD 2015 search for ${{\mathit t}}{{\overline{\mathit t}}}{{\mathit H}^{0}}$ production with ${{\mathit H}^{0}}$ decaying to ${{\mathit \gamma}}{{\mathit \gamma}}$ in 4.5 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 7 TeV and 20.3 fb${}^{-1}$ at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV. The quoted result on the signal strength is equivalent to an upper limit of 6.7 at 95$\%$ CL and is given for ${\mathit m}_{{{\mathit H}^{0}}}$ = 125.4 GeV.
6  AAD 2015BC search for ${{\mathit t}}{{\overline{\mathit t}}}{{\mathit H}^{0}}$ production with ${{\mathit H}^{0}}$ decaying to ${{\mathit b}}{{\overline{\mathit b}}}$ in 20.3 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV. The corresponding upper limit is 3.4 at 95$\%$ CL. The quoted signal strength is given for ${\mathit m}_{{{\mathit H}^{0}}}$ = 125 GeV.
7  AAD 2015T search for ${{\mathit t}}{{\overline{\mathit t}}}{{\mathit H}^{0}}$ production with ${{\mathit H}^{0}}$ resulting in multilepton final states (mainly from ${{\mathit W}}{{\mathit W}^{*}}$ , ${{\mathit \tau}}{{\mathit \tau}}$ , ${{\mathit Z}}{{\mathit Z}^{*}}$ ) in 20.3 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV. The quoted result on the signal strength is given for ${\mathit m}_{{{\mathit H}^{0}}}$ = 125 GeV and corresponds to an upper limit of 4.7 at 95$\%$ CL. The data sample is independent from AAD 2015 and AAD 2015BC.
8  KHACHATRYAN 2015AN search for ${{\mathit t}}{{\overline{\mathit t}}}{{\mathit H}^{0}}$ production with ${{\mathit H}^{0}}$ decaying to ${{\mathit b}}{{\overline{\mathit b}}}$ in 19.5 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV. The quoted result on the signal strength is equivalent to an upper limit of 4.2 at 95$\%$ CL and is given for ${\mathit m}_{{{\mathit H}^{0}}}$ = 125 GeV.
9  KHACHATRYAN 2014H search for ${{\mathit t}}{{\overline{\mathit t}}}{{\mathit H}^{0}}$ production with ${{\mathit H}^{0}}$ decaying to ${{\mathit b}}{{\overline{\mathit b}}}$ , ${{\mathit \tau}}{{\mathit \tau}}$ , ${{\mathit \gamma}}{{\mathit \gamma}}$ , ${{\mathit W}}{{\mathit W}^{*}}$ , and ${{\mathit Z}}{{\mathit Z}^{*}}$ , in 5.1 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 7 TeV and 19.7 fb${}^{-1}$ at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV. The quoted signal strength is given for ${\mathit m}_{{{\mathit H}^{0}}}$ = 125.6 GeV.
10  AALTONEN 2013L combine all CDF results with $9.45 - 10.0$ fb${}^{-1}$ of ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 1.96 TeV. The quoted signal strength is given for ${\mathit m}_{{{\mathit H}^{0}}}$ = 125 GeV.
11  CHATRCHYAN 2013X search for ${{\mathit t}}{{\overline{\mathit t}}}{{\mathit H}^{0}}$ production followed by ${{\mathit H}^{0}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}$ , one top decaying to ${{\mathit \ell}}{{\mathit \nu}}$ and the other to either ${{\mathit \ell}}{{\mathit \nu}}$ or ${{\mathit q}}{{\overline{\mathit q}}}$ in 5.0 fb${}^{-1}$ and 5.1 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 7 and 8 TeV. A limit on cross section times branching ratio which corresponds to ($4.0 - 8.6$) times the expected Standard Model cross section is given for ${\mathit m}_{{{\mathit H}^{0}}}$ = $110 - 140$ GeV at 95$\%$ CL. The quoted limit is given for ${\mathit m}_{{{\mathit H}^{0}}}$ = 125 GeV, where 5.2 is expected for no signal.
  References:
AAD 2016K
EPJ C76 6 Measurements of the Higgs Boson Production and Decay Rates and Coupling Strengths using ${{\mathit p}}{{\mathit p}}$ Collision Data at $\sqrt {s }$ = 7 and 8 TeV in the ATLAS Experiment
AAD 2016AN
JHEP 1608 045 Measurements of the Higgs Boson Production and Decay Rates and Constraints on its Couplings from a Combined ATLAS and CMS Analysis of the LHC ${{\mathit p}}{{\mathit p}}$ Collision Data at $\sqrt {s }$ =7 and 8 TeV
AAD 2016AL
JHEP 1605 160 Search for the Standard Model Higgs Boson Decaying into ${\mathit {\mathit b}}{\mathit {\overline{\mathit b}}}$ Produced in Association with Top Quarks Decaying Hadronically in ${{\mathit p}}{{\mathit p}}$ Collisions at $\sqrt {s }$ = 8 TeV with the ATLAS Detector
AAD 2015T
PL B749 519 Search for the Associated Production of the Higgs Boson with a Top Quark Pair in Multilepton Final States with the ATLAS Detector
AAD 2015BC
EPJ C75 349 Search for the Standard Model Higgs Boson Produced in Association with Top Quarks and Decaying into ${\mathit {\mathit b}}{\mathit {\overline{\mathit b}}}$ in ${{\mathit p}}{{\mathit p}}$ Collisions at $\sqrt {s }$ = 8 TeV with the ATLAS Detector
AAD 2015
PL B740 222 Search for ${{\mathit H}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}}$ Produced in Association with Top Quarks and Constraints on the Yukawa Coupling between the Top Quark and the Higgs Boson using Data Taken at 7 TeV and 8 TeV with the ATLAS Detector
KHACHATRYAN 2015AN
EPJ C75 251 Search for a Standard Model Higgs Boson Produced in Association with a Top-Quark Pair and Decaying to Bottom Quarks Using a Matrix Element Method
KHACHATRYAN 2014H
JHEP 1409 087 Search for the Associated Production of the Higgs Boson with a Top-quark Pair
AALTONEN 2013L
PR D88 052013 Combination of Searches for the Higgs Boson Using the Full CDF Data Set
CHATRCHYAN 2013X
JHEP 1305 145 Search for the Standard Model Higgs Boson Produced in Association with a Top-Quark Pair in ${{\mathit p}}{{\mathit p}}$ Collisions at the LHC
AAD 2015CT
JHEP 1512 055 Search for High-Mass Diboson Resonances with Boson-Tagged Jets in Proton-Proton Collisions at $\sqrt {s }$ = 8 TeV with the ATLAS Detector