CONSTRAINED FIT INFORMATIONshow precise values?

 
An overall fit to 15 branching ratios uses 55 measurements and one constraint to determine 10 parameters. The overall fit has a $\chi {}^{2}$ = 57.0 for 46 degrees of freedom.
 
The following off-diagonal array elements are the correlation coefficients <$\mathit \delta $x$_{i}$~$\delta $x$_{j}$> $/$ ($\mathit \delta $x$_{i}\cdot{}\delta $x$_{j}$), in percent, from the fit to parameters ${{\mathit p}_{{i}}}$, including the branching fractions, $\mathit x_{i}$ =$\Gamma _{i}$ $/$ $\Gamma _{total}$. The fit constrains the ${{\mathit x}_{{i}}}$ whose labels appear in this array to sum to one.
 
 x1  100
 x2   100
 x3    100
 x4     100
 x5      100
 x6       100
 x7        100
 x9         100
 x13          100
 x15           100
   x1  x2  x3  x4  x5  x6  x7  x9  x13  x15
 
  Mode Fraction (Γi / Γ)Scale factor

Γ1  ${{\mathit \omega}{(782)}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit \pi}^{0}}$  $0.893$ $\pm0.006$ 
Γ2  ${{\mathit \omega}{(782)}}$ $\rightarrow$ ${{\mathit \pi}^{0}}{{\mathit \gamma}}$  $0.0840$ $\pm0.0022$ 1.8
Γ3  ${{\mathit \omega}{(782)}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$  $0.0153$ $\pm0.0006$ 
Γ4  ${{\mathit \omega}{(782)}}$ $\rightarrow$ neutrals (excluding ${{\mathit \pi}^{0}}{{\mathit \gamma}}$ ) $0.007$ ${}^{+.007}_{-.004}$ 1.1
Γ5  ${{\mathit \omega}{(782)}}$ $\rightarrow$ ${{\mathit \eta}}{{\mathit \gamma}}$  ($4.5$ $\pm0.4$) $ \times 10^{-4}$ 1.1
Γ6  ${{\mathit \omega}{(782)}}$ $\rightarrow$ ${{\mathit \pi}^{0}}{{\mathit e}^{+}}{{\mathit e}^{-}}$  ($7.7$ $\pm0.6$) $ \times 10^{-4}$ 
Γ7  ${{\mathit \omega}{(782)}}$ $\rightarrow$ ${{\mathit \pi}^{0}}{{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$  ($1.34$ $\pm0.18$) $ \times 10^{-4}$ 1.5
Γ9  ${{\mathit \omega}{(782)}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$  ($7.36$ $\pm0.15$) $ \times 10^{-5}$ 1.5
Γ13  ${{\mathit \omega}{(782)}}$ $\rightarrow$ ${{\mathit \pi}^{0}}{{\mathit \pi}^{0}}{{\mathit \gamma}}$  ($6.7$ $\pm1.1$) $ \times 10^{-5}$ 
Γ15  ${{\mathit \omega}{(782)}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$  ($7.4$ $\pm1.8$) $ \times 10^{-5}$