CONSTRAINED FIT INFORMATIONshow precise values?

 
An overall fit to total width, partial width, 2 combinations of particle width obtained from integrated cross section,16 branching ratios uses 46 measurements and one constraint to determine 9 parameters. The overall fit has a $\chi {}^{2}$ = 62.7 for 38 degrees of freedom.
 
The following off-diagonal array elements are the correlation coefficients <$\mathit \delta $x$_{i}$~$\delta $x$_{j}$> $/$ ($\mathit \delta $x$_{i}\cdot{}\delta $x$_{j}$), in percent, from the fit to parameters ${{\mathit p}_{{i}}}$, including the branching fractions, $\mathit x_{i}$ =$\Gamma _{i}$ $/$ $\Gamma _{total}$. The fit constrains the ${{\mathit x}_{{i}}}$ whose labels appear in this array to sum to one.
 
 x1  100
 x2   100
 x4    100
 x5     100
 x7      100
 x8       100
 x11        100
 x22         100
 Γ          100
   x1  x2  x4  x5  x7  x8  x11  x22 Γ
 
  Mode Rate (MeV)Scale factor

Γ1  ${{\mathit \eta}^{\,'}{(958)}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit \eta}}$  $0.084$ $\pm0.004$ 
Γ2  ${{\mathit \eta}^{\,'}{(958)}}$ $\rightarrow$ ${{\mathit \rho}^{0}}{{\mathit \gamma}}$ (including non-resonant ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit \gamma}}$) $0.0567$ $\pm0.0027$ 
Γ4  ${{\mathit \eta}^{\,'}{(958)}}$ $\rightarrow$ ${{\mathit \pi}^{0}}{{\mathit \pi}^{0}}{{\mathit \eta}}$  $0.0448$ $\pm0.0023$ 
Γ5  ${{\mathit \eta}^{\,'}{(958)}}$ $\rightarrow$ ${{\mathit \omega}}{{\mathit \gamma}}$  $0.00514$ $\pm0.00035$ 
Γ7  ${{\mathit \eta}^{\,'}{(958)}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}}$  $0.00436$ $\pm0.00013$ 
Γ8  ${{\mathit \eta}^{\,'}{(958)}}$ $\rightarrow$ 3 ${{\mathit \pi}^{0}}$  ($5.0$ $\pm0.4$) $ \times 10^{-4}$ 
Γ11  ${{\mathit \eta}^{\,'}{(958)}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit \pi}^{0}}$  ($7.1$ $\pm0.5$) $ \times 10^{-4}$ 
Γ22  ${{\mathit \eta}^{\,'}{(958)}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit e}^{+}}{{\mathit e}^{-}}$  ($4.6$ ${}^{+2.5}_{-1.9}$) $ \times 10^{-4}$