CONSTRAINED FIT INFORMATION show precise values?
 
A multiparticle fit to ${{\mathit \chi}_{{{c1}}}{(1P)}}$, ${{\mathit \chi}_{{{c0}}}{(1P)}}$, ${{\mathit \chi}_{{{c2}}}{(1P)}}$ and ${{\mathit \psi}{(2S)}}$ with 4 total widths, partial width, 25 combinations of partial widths obtained from integrated cross section, and 88 branching ratios uses 255 measurements and one constraint to determine 49 parameters. The overall fit has a $\chi {}^{2}$ = 393.1 for 207 degrees of freedom.
 
The following off-diagonal array elements are the correlation coefficients <$\mathit \delta $x$_{i}\delta $x$_{j}$> $/$ ($\mathit \delta $x$_{i}\cdot{}\delta $x$_{j}$), in percent, from the fit to parameters ${{\mathit p}_{{{i}}}}$, including the branching fractions, $\mathit x_{i}$ = $\Gamma _{i}$ $/$ $\Gamma _{total}$.
 
 x19 100
 x48  100
 x59   100
 x73    100
 x102     100
 x${{\mathit \chi}_{{{c2}}}{(1P)}}$1      100
 x${{\mathit \chi}_{{{c0}}}{(1P)}}$1       100
 x${{\mathit \chi}_{{{c0}}}{(1P)}}$2        100
 x${{\mathit \psi}{(2S)}}$7         100
 x${{\mathit \chi}_{{{c0}}}{(1P)}}$8          100
 x${{\mathit \psi}{(2S)}}$8           100
 x${{\mathit \psi}{(2S)}}$9            100
 x${{\mathit \psi}{(2S)}}$12             100
 x${{\mathit \psi}{(2S)}}$13              100
 x${{\mathit \psi}{(2S)}}$14               100
 x${{\mathit \chi}_{{{c2}}}{(1P)}}$14                100
 x${{\mathit \chi}_{{{c2}}}{(1P)}}$17                 100
 x${{\mathit \chi}_{{{c2}}}{(1P)}}$18                  100
 x${{\mathit \chi}_{{{c2}}}{(1P)}}$20                   100
 x${{\mathit \chi}_{{{c2}}}{(1P)}}$25                    100
 x${{\mathit \chi}_{{{c2}}}{(1P)}}$26                     100
 x${{\mathit \chi}_{{{c0}}}{(1P)}}$30                      100
 x${{\mathit \chi}_{{{c2}}}{(1P)}}$31                       100
 x${{\mathit \chi}_{{{c0}}}{(1P)}}$32                        100
 x${{\mathit \chi}_{{{c2}}}{(1P)}}$32                         100
 x${{\mathit \chi}_{{{c2}}}{(1P)}}$33                          100
 x${{\mathit \chi}_{{{c0}}}{(1P)}}$36                           100
 x${{\mathit \chi}_{{{c2}}}{(1P)}}$42                            100
 x${{\mathit \chi}_{{{c0}}}{(1P)}}$42                             100
 x${{\mathit \chi}_{{{c0}}}{(1P)}}$43                              100
 x${{\mathit \chi}_{{{c0}}}{(1P)}}$51                               100
 x${{\mathit \chi}_{{{c2}}}{(1P)}}$51                                100
 x${{\mathit \chi}_{{{c2}}}{(1P)}}$57                                 100
 x${{\mathit \chi}_{{{c0}}}{(1P)}}$57                                  100
 x${{\mathit \chi}_{{{c0}}}{(1P)}}$59                                   100
 x${{\mathit \chi}_{{{c2}}}{(1P)}}$71                                    100
 x${{\mathit \chi}_{{{c0}}}{(1P)}}$73                                     100
 x${{\mathit \chi}_{{{c0}}}{(1P)}}$100                                      100
 x${{\mathit \chi}_{{{c2}}}{(1P)}}$100                                       100
 x${{\mathit \chi}_{{{c0}}}{(1P)}}$104                                        100
 x${{\mathit \chi}_{{{c2}}}{(1P)}}$104                                         100
 x${{\mathit \psi}{(2S)}}$112                                          100
 x${{\mathit \psi}{(2S)}}$181                                           100
 x${{\mathit \psi}{(2S)}}$182                                            100
 x${{\mathit \psi}{(2S)}}$183                                             100
 Γ${{\mathit \psi}{(2S)}}$                                              100
 Γ${{\mathit \chi}_{{{c1}}}{(1P)}}$                                               100
 Γ${{\mathit \chi}_{{{c2}}}{(1P)}}$                                                100
 Γ${{\mathit \chi}_{{{c0}}}{(1P)}}$                                                 100
   x19  x48  x59  x73  x102  x${{\mathit \chi}_{{{c2}}}{(1P)}}$1  x${{\mathit \chi}_{{{c0}}}{(1P)}}$1  x${{\mathit \chi}_{{{c0}}}{(1P)}}$2  x${{\mathit \psi}{(2S)}}$7  x${{\mathit \chi}_{{{c0}}}{(1P)}}$8  x${{\mathit \psi}{(2S)}}$8  x${{\mathit \psi}{(2S)}}$9  x${{\mathit \psi}{(2S)}}$12  x${{\mathit \psi}{(2S)}}$13  x${{\mathit \psi}{(2S)}}$14  x${{\mathit \chi}_{{{c2}}}{(1P)}}$14  x${{\mathit \chi}_{{{c2}}}{(1P)}}$17  x${{\mathit \chi}_{{{c2}}}{(1P)}}$18  x${{\mathit \chi}_{{{c2}}}{(1P)}}$20  x${{\mathit \chi}_{{{c2}}}{(1P)}}$25  x${{\mathit \chi}_{{{c2}}}{(1P)}}$26  x${{\mathit \chi}_{{{c0}}}{(1P)}}$30  x${{\mathit \chi}_{{{c2}}}{(1P)}}$31  x${{\mathit \chi}_{{{c0}}}{(1P)}}$32  x${{\mathit \chi}_{{{c2}}}{(1P)}}$32  x${{\mathit \chi}_{{{c2}}}{(1P)}}$33  x${{\mathit \chi}_{{{c0}}}{(1P)}}$36  x${{\mathit \chi}_{{{c2}}}{(1P)}}$42  x${{\mathit \chi}_{{{c0}}}{(1P)}}$42  x${{\mathit \chi}_{{{c0}}}{(1P)}}$43  x${{\mathit \chi}_{{{c0}}}{(1P)}}$51  x${{\mathit \chi}_{{{c2}}}{(1P)}}$51  x${{\mathit \chi}_{{{c2}}}{(1P)}}$57  x${{\mathit \chi}_{{{c0}}}{(1P)}}$57  x${{\mathit \chi}_{{{c0}}}{(1P)}}$59  x${{\mathit \chi}_{{{c2}}}{(1P)}}$71  x${{\mathit \chi}_{{{c0}}}{(1P)}}$73  x${{\mathit \chi}_{{{c0}}}{(1P)}}$100  x${{\mathit \chi}_{{{c2}}}{(1P)}}$100  x${{\mathit \chi}_{{{c0}}}{(1P)}}$104  x${{\mathit \chi}_{{{c2}}}{(1P)}}$104  x${{\mathit \psi}{(2S)}}$112  x${{\mathit \psi}{(2S)}}$181  x${{\mathit \psi}{(2S)}}$182  x${{\mathit \psi}{(2S)}}$183 Γ${{\mathit \psi}{(2S)}}$  Γ${{\mathit \chi}_{{{c1}}}{(1P)}}$  Γ${{\mathit \chi}_{{{c2}}}{(1P)}}$  Γ${{\mathit \chi}_{{{c0}}}{(1P)}}$
 
    Mode RateScale factor

Γ19 ${{\mathit \chi}_{{{c1}}}{(1P)}}$ $\rightarrow$ ${{\overline{\mathit K}}^{0}}{{\mathit K}^{+}}{{\mathit \pi}^{-}}$ + c.c. ($7.0$ $\pm0.6$) $ \times 10^{-3}$ 1.1
Γ48 ${{\mathit \chi}_{{{c1}}}{(1P)}}$ $\rightarrow$ ${{\mathit K}^{+}}{{\mathit K}^{-}}{{\mathit K}^{+}}{{\mathit K}^{-}}$ ($5.4$ $\pm1.1$) $ \times 10^{-4}$ 
Γ59 ${{\mathit \chi}_{{{c1}}}{(1P)}}$ $\rightarrow$ ${{\mathit p}}{{\overline{\mathit p}}}$ ($7.6$ $\pm0.4$) $ \times 10^{-5}$ 1.2
Γ73 ${{\mathit \chi}_{{{c1}}}{(1P)}}$ $\rightarrow$ ${{\mathit \Lambda}}{{\overline{\mathit \Lambda}}}$ ($1.27$ $\pm0.09$) $ \times 10^{-4}$ 1.1
Γ102 ${{\mathit \chi}_{{{c1}}}{(1P)}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit J / \psi}{(1S)}}$ ($34.3$ $\pm1.3$) $ \times 10^{-2}$ 1.3
Γ${{\mathit \chi}_{{{c2}}}{(1P)}}$1 ${{\mathit \chi}_{{{c2}}}{(1P)}}$ $\rightarrow$ 2( ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$) ($1.12$ $\pm0.08$) $ \times 10^{-2}$ 1.5
Γ${{\mathit \chi}_{{{c0}}}{(1P)}}$1 ${{\mathit \chi}_{{{c0}}}{(1P)}}$ $\rightarrow$ 2( ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$) ($2.18$ $\pm0.11$) $ \times 10^{-2}$ 1.2
Γ${{\mathit \chi}_{{{c0}}}{(1P)}}$2 ${{\mathit \chi}_{{{c0}}}{(1P)}}$ $\rightarrow$ ${{\mathit \rho}^{0}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ ($8.5$ $\pm2.7$) $ \times 10^{-3}$ 
Γ${{\mathit \psi}{(2S)}}$7 ${{\mathit \psi}{(2S)}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ ($7.94$ $\pm0.22$) $ \times 10^{-3}$ 1.3
Γ${{\mathit \chi}_{{{c0}}}{(1P)}}$8 ${{\mathit \chi}_{{{c0}}}{(1P)}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit K}^{+}}{{\mathit K}^{-}}$ ($1.81$ $\pm0.16$) $ \times 10^{-2}$ 1.2
Γ${{\mathit \psi}{(2S)}}$8 ${{\mathit \psi}{(2S)}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ ($8.0$ $\pm0.6$) $ \times 10^{-3}$ 
Γ${{\mathit \psi}{(2S)}}$9 ${{\mathit \psi}{(2S)}}$ $\rightarrow$ ${{\mathit \tau}^{+}}{{\mathit \tau}^{-}}$ ($3.1$ $\pm0.4$) $ \times 10^{-3}$ 
Γ${{\mathit \psi}{(2S)}}$12 ${{\mathit \psi}{(2S)}}$ $\rightarrow$ ${{\mathit J / \psi}{(1S)}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ ($34.69$ $\pm0.34$) $ \times 10^{-2}$ 1.1
Γ${{\mathit \psi}{(2S)}}$13 ${{\mathit \psi}{(2S)}}$ $\rightarrow$ ${{\mathit J / \psi}{(1S)}}{{\mathit \pi}^{0}}{{\mathit \pi}^{0}}$ ($18.2$ $\pm0.5$) $ \times 10^{-2}$ 1.6
Γ${{\mathit \psi}{(2S)}}$14 ${{\mathit \psi}{(2S)}}$ $\rightarrow$ ${{\mathit J / \psi}{(1S)}}{{\mathit \eta}}$ ($3.37$ $\pm0.06$) $ \times 10^{-2}$ 1.2
Γ${{\mathit \chi}_{{{c2}}}{(1P)}}$14 ${{\mathit \chi}_{{{c2}}}{(1P)}}$ $\rightarrow$ ${{\mathit K}^{+}}{{\mathit K}^{-}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ ($8.4$ $\pm1.1$) $ \times 10^{-3}$ 1.2
Γ${{\mathit \chi}_{{{c2}}}{(1P)}}$17 ${{\mathit \chi}_{{{c2}}}{(1P)}}$ $\rightarrow$ ${{\mathit K}^{+}}{{\overline{\mathit K}}^{*}{(892)}^{0}}{{\mathit \pi}^{-}}$ + c.c. ($2.1$ $\pm1.0$) $ \times 10^{-3}$ 
Γ${{\mathit \chi}_{{{c2}}}{(1P)}}$18 ${{\mathit \chi}_{{{c2}}}{(1P)}}$ $\rightarrow$ ${{\mathit K}^{*}{(892)}^{0}}{{\overline{\mathit K}}^{*}{(892)}^{0}}$ ($2.2$ $\pm0.9$) $ \times 10^{-3}$ 2.2
Γ${{\mathit \chi}_{{{c2}}}{(1P)}}$20 ${{\mathit \chi}_{{{c2}}}{(1P)}}$ $\rightarrow$ ${{\mathit \phi}}{{\mathit \phi}}$ ($1.23$ $\pm0.07$) $ \times 10^{-3}$ 1.9
Γ${{\mathit \chi}_{{{c2}}}{(1P)}}$25 ${{\mathit \chi}_{{{c2}}}{(1P)}}$ $\rightarrow$ ${{\mathit \pi}}{{\mathit \pi}}$ ($2.26$ $\pm0.10$) $ \times 10^{-3}$ 
Γ${{\mathit \chi}_{{{c2}}}{(1P)}}$26 ${{\mathit \chi}_{{{c2}}}{(1P)}}$ $\rightarrow$ ${{\mathit \rho}^{0}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ ($4.0$ $\pm1.7$) $ \times 10^{-3}$ 
Γ${{\mathit \chi}_{{{c0}}}{(1P)}}$30 ${{\mathit \chi}_{{{c0}}}{(1P)}}$ $\rightarrow$ ${{\mathit K}^{+}}{{\overline{\mathit K}}^{*}{(892)}^{0}}{{\mathit \pi}^{-}}$ + c.c. ($7.4$ $\pm1.6$) $ \times 10^{-3}$ 
Γ${{\mathit \chi}_{{{c2}}}{(1P)}}$31 ${{\mathit \chi}_{{{c2}}}{(1P)}}$ $\rightarrow$ ${{\mathit \eta}}{{\mathit \eta}}$ ($5.5$ $\pm0.4$) $ \times 10^{-4}$ 
Γ${{\mathit \chi}_{{{c0}}}{(1P)}}$32 ${{\mathit \chi}_{{{c0}}}{(1P)}}$ $\rightarrow$ ${{\mathit \pi}}{{\mathit \pi}}$ ($8.6$ $\pm0.4$) $ \times 10^{-3}$ 1.2
Γ${{\mathit \chi}_{{{c2}}}{(1P)}}$32 ${{\mathit \chi}_{{{c2}}}{(1P)}}$ $\rightarrow$ ${{\mathit K}^{+}}{{\mathit K}^{-}}$ ($1.02$ $\pm0.15$) $ \times 10^{-3}$ 2.2
Γ${{\mathit \chi}_{{{c2}}}{(1P)}}$33 ${{\mathit \chi}_{{{c2}}}{(1P)}}$ $\rightarrow$ ${{\mathit K}_S^0}$ ${{\mathit K}_S^0}$  ($5.3$ $\pm0.4$) $ \times 10^{-4}$ 
Γ${{\mathit \chi}_{{{c0}}}{(1P)}}$36 ${{\mathit \chi}_{{{c0}}}{(1P)}}$ $\rightarrow$ ${{\mathit \eta}}{{\mathit \eta}}$ ($3.02$ $\pm0.25$) $ \times 10^{-3}$ 1.3
Γ${{\mathit \chi}_{{{c2}}}{(1P)}}$42 ${{\mathit \chi}_{{{c2}}}{(1P)}}$ $\rightarrow$ ${{\overline{\mathit K}}^{0}}{{\mathit K}^{+}}{{\mathit \pi}^{-}}$ + c.c. ($1.30$ $\pm0.19$) $ \times 10^{-3}$ 
Γ${{\mathit \chi}_{{{c0}}}{(1P)}}$42 ${{\mathit \chi}_{{{c0}}}{(1P)}}$ $\rightarrow$ ${{\mathit K}^{+}}{{\mathit K}^{-}}$ ($6.07$ $\pm0.33$) $ \times 10^{-3}$ 1.1
Γ${{\mathit \chi}_{{{c0}}}{(1P)}}$43 ${{\mathit \chi}_{{{c0}}}{(1P)}}$ $\rightarrow$ ${{\mathit K}_S^0}$ ${{\mathit K}_S^0}$  ($3.18$ $\pm0.19$) $ \times 10^{-3}$ 1.1
Γ${{\mathit \chi}_{{{c0}}}{(1P)}}$51 ${{\mathit \chi}_{{{c0}}}{(1P)}}$ $\rightarrow$ ${{\mathit K}^{+}}{{\mathit K}^{-}}{{\mathit K}^{+}}{{\mathit K}^{-}}$ ($2.8$ $\pm0.4$) $ \times 10^{-3}$ 1.5
Γ${{\mathit \chi}_{{{c2}}}{(1P)}}$51 ${{\mathit \chi}_{{{c2}}}{(1P)}}$ $\rightarrow$ ${{\mathit K}^{+}}{{\mathit K}^{-}}{{\mathit K}^{+}}{{\mathit K}^{-}}$ ($1.67$ $\pm0.22$) $ \times 10^{-3}$ 1.1
Γ${{\mathit \chi}_{{{c2}}}{(1P)}}$57 ${{\mathit \chi}_{{{c2}}}{(1P)}}$ $\rightarrow$ ${{\mathit p}}{{\overline{\mathit p}}}$ ($7.3$ $\pm0.4$) $ \times 10^{-5}$ 1.1
Γ${{\mathit \chi}_{{{c0}}}{(1P)}}$57 ${{\mathit \chi}_{{{c0}}}{(1P)}}$ $\rightarrow$ ${{\mathit \phi}}{{\mathit \phi}}$ ($8.48$ $\pm0.31$) $ \times 10^{-4}$ 
Γ${{\mathit \chi}_{{{c0}}}{(1P)}}$59 ${{\mathit \chi}_{{{c0}}}{(1P)}}$ $\rightarrow$ ${{\mathit p}}{{\overline{\mathit p}}}$ ($2.21$ $\pm0.14$) $ \times 10^{-4}$ 1.6
Γ${{\mathit \chi}_{{{c2}}}{(1P)}}$71 ${{\mathit \chi}_{{{c2}}}{(1P)}}$ $\rightarrow$ ${{\mathit \Lambda}}{{\overline{\mathit \Lambda}}}$ ($1.86$ $\pm0.16$) $ \times 10^{-4}$ 
Γ${{\mathit \chi}_{{{c0}}}{(1P)}}$73 ${{\mathit \chi}_{{{c0}}}{(1P)}}$ $\rightarrow$ ${{\mathit \Lambda}}{{\overline{\mathit \Lambda}}}$ ($3.61$ $\pm0.16$) $ \times 10^{-4}$ 1.1
Γ${{\mathit \chi}_{{{c0}}}{(1P)}}$100 ${{\mathit \chi}_{{{c0}}}{(1P)}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit J / \psi}{(1S)}}$ ($1.41$ $\pm0.09$) $ \times 10^{-2}$ 1.7
Γ${{\mathit \chi}_{{{c2}}}{(1P)}}$100 ${{\mathit \chi}_{{{c2}}}{(1P)}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit J / \psi}{(1S)}}$ ($19.5$ $\pm0.7$) $ \times 10^{-2}$ 1.5
Γ${{\mathit \chi}_{{{c0}}}{(1P)}}$104 ${{\mathit \chi}_{{{c0}}}{(1P)}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}}$ ($2.06$ $\pm0.10$) $ \times 10^{-4}$ 1.1
Γ${{\mathit \chi}_{{{c2}}}{(1P)}}$104 ${{\mathit \chi}_{{{c2}}}{(1P)}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}}$ ($2.91$ $\pm0.12$) $ \times 10^{-4}$ 1.3
Γ${{\mathit \psi}{(2S)}}$112 ${{\mathit \psi}{(2S)}}$ $\rightarrow$ ${{\mathit p}}{{\overline{\mathit p}}}$ ($2.94$ $\pm0.09$) $ \times 10^{-4}$ 1.3
Γ${{\mathit \psi}{(2S)}}$181 ${{\mathit \psi}{(2S)}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \chi}_{{{c0}}}{(1P)}}$ ($9.75$ $\pm0.22$) $ \times 10^{-2}$ 1.1
Γ${{\mathit \psi}{(2S)}}$182 ${{\mathit \psi}{(2S)}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \chi}_{{{c1}}}{(1P)}}$ ($9.75$ $\pm0.27$) $ \times 10^{-2}$ 1.1
Γ${{\mathit \psi}{(2S)}}$183 ${{\mathit \psi}{(2S)}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \chi}_{{{c2}}}{(1P)}}$ ($9.38$ $\pm0.23$) $ \times 10^{-2}$ 1.2
Γ${{\mathit \psi}{(2S)}}$ ${{\mathit \psi}{(2S)}}$ WIDTH $293$ $\pm9$ (keV) 1.2
Γ${{\mathit \chi}_{{{c1}}}{(1P)}}$ ${{\mathit \chi}_{{{c1}}}{(1P)}}$ WIDTH $0.84$ $\pm0.04$ (MeV) 1.1
Γ${{\mathit \chi}_{{{c2}}}{(1P)}}$ ${{\mathit \chi}_{{{c2}}}{(1P)}}$ WIDTH $1.97$ $\pm0.09$ (MeV) 1.1
Γ${{\mathit \chi}_{{{c0}}}{(1P)}}$ ${{\mathit \chi}_{{{c0}}}{(1P)}}$ WIDTH $10.9$ $\pm0.6$ (MeV) 1.1