CONSTRAINED FIT INFORMATION show precise values?
 
An overall fit to 35 branching ratios uses 46 measurements to determine 18 parameters. The overall fit has a $\chi {}^{2}$ = 65.0 for 28 degrees of freedom.
 
The following off-diagonal array elements are the correlation coefficients <$\mathit \delta $p$_{i}\delta $p$_{j}$> $/$ ($\mathit \delta $p$_{i}\cdot{}\delta $p$_{j}$), in percent, from the fit to parameters ${{\mathit p}_{{{i}}}}$, including the branching fractions, $\mathit x_{i}$ = $\Gamma _{i}$ $/$ $\Gamma _{total}$.
 
 x18 100
 x22  100
 x29   100
 x33    100
 x43     100
 x44      100
 x45       100
 x60        100
 x62         100
 x98          100
 x110           100
 x131            100
 x134             100
 x148              100
 x150               100
 x181                100
 x182                 100
 x183                  100
   x18  x22  x29  x33  x43  x44  x45  x60  x62  x98  x110  x131  x134  x148  x150  x181  x182  x183
 
    Mode Fraction (Γi / Γ)Scale factor

Γ18 ${{\mathit D}^{+}}$ $\rightarrow$ ${{\overline{\mathit K}}^{0}}{{\mathit \mu}^{+}}{{\mathit \nu}_{{{\mu}}}}$ ($8.68$ $\pm0.10$) $ \times 10^{-2}$ 
Γ22 ${{\mathit D}^{+}}$ $\rightarrow$ ${{\mathit K}^{-}}{{\mathit \pi}^{+}}{{\mathit e}^{+}}{{\mathit \nu}_{{{e}}}}$ ($4.02$ $\pm0.18$) $ \times 10^{-2}$ 3.2
Γ29 ${{\mathit D}^{+}}$ $\rightarrow$ ${{\overline{\mathit K}}^{*}{(892)}^{0}}{{\mathit e}^{+}}{{\mathit \nu}_{{{e}}}}$ ($5.40$ $\pm0.10$) $ \times 10^{-2}$ 1.1
Γ33 ${{\mathit D}^{+}}$ $\rightarrow$ ${{\overline{\mathit K}}^{*}{(892)}^{0}}{{\mathit \mu}^{+}}{{\mathit \nu}_{{{\mu}}}}$ ($5.27$ $\pm0.15$) $ \times 10^{-2}$ 1.1
Γ43 ${{\mathit D}^{+}}$ $\rightarrow$ ${{\mathit \pi}^{-}}{{\mathit \pi}^{+}}{{\mathit e}^{+}}{{\mathit \nu}_{{{e}}}}$ ($2.45$ $\pm0.08$) $ \times 10^{-3}$ 
Γ44 ${{\mathit D}^{+}}$ $\rightarrow$ ${{\mathit f}_{{{0}}}{(500)}^{0}}{{\mathit e}^{+}}{{\mathit \nu}_{{{e}}}}$ , ${{\mathit f}_{{{0}}}{(500)}^{0}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ ($6.2$ $\pm0.4$) $ \times 10^{-4}$ 
Γ45 ${{\mathit D}^{+}}$ $\rightarrow$ ${{\mathit \rho}^{0}}{{\mathit e}^{+}}{{\mathit \nu}_{{{e}}}}$ ($1.87$ $\pm0.06$) $ \times 10^{-3}$ 
Γ60 ${{\mathit D}^{+}}$ $\rightarrow$ ${{\mathit K}_S^0}$ ${{\mathit \pi}^{+}}$ ($1.561$ $\pm0.031$) $ \times 10^{-2}$ 1.7
Γ62 ${{\mathit D}^{+}}$ $\rightarrow$ ${{\mathit K}^{-}}$2 ${{\mathit \pi}^{+}}$ ($9.38$ $\pm0.16$) $ \times 10^{-2}$ 1.6
Γ98 ${{\mathit D}^{+}}$ $\rightarrow$ ${{\mathit K}^{-}}$3 ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ ($5.7$ $\pm0.5$) $ \times 10^{-3}$ 1.1
Γ110 ${{\mathit D}^{+}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{0}}$ ($1.247$ $\pm0.033$) $ \times 10^{-3}$ 
Γ131 ${{\mathit D}^{+}}$ $\rightarrow$ 3 ${{\mathit \pi}^{+}}$2 ${{\mathit \pi}^{-}}$ ($1.66$ $\pm0.16$) $ \times 10^{-3}$ 1.1
Γ134 ${{\mathit D}^{+}}$ $\rightarrow$ ${{\mathit \eta}}{{\mathit \pi}^{+}}$ ($3.77$ $\pm0.09$) $ \times 10^{-3}$ 
Γ148 ${{\mathit D}^{+}}$ $\rightarrow$ ${{\mathit \eta}^{\,'}{(958)}}{{\mathit \pi}^{+}}$ ($4.97$ $\pm0.19$) $ \times 10^{-3}$ 
Γ150 ${{\mathit D}^{+}}$ $\rightarrow$ ${{\mathit K}_S^0}$ ${{\mathit K}^{+}}$ ($3.04$ $\pm0.09$) $ \times 10^{-3}$ 2.2
Γ181 ${{\mathit D}^{+}}$ $\rightarrow$ ${{\mathit K}^{+}}{{\mathit \pi}^{0}}$ ($2.08$ $\pm0.21$) $ \times 10^{-4}$ 1.4
Γ182 ${{\mathit D}^{+}}$ $\rightarrow$ ${{\mathit K}^{+}}{{\mathit \eta}}$ ($1.25$ $\pm0.16$) $ \times 10^{-4}$ 1.1
Γ183 ${{\mathit D}^{+}}$ $\rightarrow$ ${{\mathit K}^{+}}{{\mathit \eta}^{\,'}{(958)}}$ ($1.85$ $\pm0.20$) $ \times 10^{-4}$