CONSTRAINED FIT INFORMATION show precise values?
 
An overall fit to 71 branching ratios uses 137 measurements to determine 35 parameters. The overall fit has a $\chi {}^{2}$ = 150.2 for 102 degrees of freedom.
 
The following off-diagonal array elements are the correlation coefficients <$\mathit \delta $p$_{i}\delta $p$_{j}$> $/$ ($\mathit \delta $p$_{i}\cdot{}\delta $p$_{j}$), in percent, from the fit to parameters ${{\mathit p}_{{{i}}}}$, including the branching fractions, $\mathit x_{i}$ = $\Gamma _{i}$ $/$ $\Gamma _{total}$.
 
 x6 100
 x20  100
 x21   100
 x22    100
 x23     100
 x27      100
 x35       100
 x36        100
 x43         100
 x44          100
 x49           100
 x64            100
 x83             100
 x94              100
 x100               100
 x109                100
 x123                 100
 x124                  100
 x125                   100
 x139                    100
 x146                     100
 x147                      100
 x148                       100
 x166                        100
 x195                         100
 x215                          100
 x217                           100
 x221                            100
 x222                             100
 x223                              100
 x224                               100
 x235                                100
 x296                                 100
 x300                                  100
 x307                                   100
   x6  x20  x21  x22  x23  x27  x35  x36  x43  x44  x49  x64  x83  x94  x100  x109  x123  x124  x125  x139  x146  x147  x148  x166  x195  x215  x217  x221  x222  x223  x224  x235  x296  x300  x307
 
    Mode Fraction (Γi / Γ)Scale factor

Γ6 ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit \mu}^{+}}$ anything ($6.8$ $\pm0.6$) $ \times 10^{-2}$ 
Γ20 ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}^{-}}{{\mathit e}^{+}}{{\mathit \nu}_{{{e}}}}$ ($3.538$ $\pm0.017$) $ \times 10^{-2}$ 1.1
Γ21 ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}^{-}}{{\mathit \mu}^{+}}{{\mathit \nu}_{{{\mu}}}}$ ($3.418$ $\pm0.019$) $ \times 10^{-2}$ 
Γ22 ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}^{*}{(892)}^{-}}{{\mathit e}^{+}}{{\mathit \nu}_{{{e}}}}$ ($2.16$ $\pm0.16$) $ \times 10^{-2}$ 
Γ23 ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}^{*}{(892)}^{-}}{{\mathit \mu}^{+}}{{\mathit \nu}_{{{\mu}}}}$ ($2.06$ $\pm0.05$) $ \times 10^{-2}$ 
Γ27 ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}^{-}}{{\mathit \pi}^{0}}{{\mathit \mu}^{+}}{{\mathit \nu}_{{{\mu}}}}$ ($7.30$ $\pm0.17$) $ \times 10^{-3}$ 
Γ35 ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit \pi}^{-}}{{\mathit e}^{+}}{{\mathit \nu}_{{{e}}}}$ ($2.91$ $\pm0.04$) $ \times 10^{-3}$ 1.0
Γ36 ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit \pi}^{-}}{{\mathit \mu}^{+}}{{\mathit \nu}_{{{\mu}}}}$ ($2.67$ $\pm0.12$) $ \times 10^{-3}$ 1.3
Γ43 ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}^{-}}{{\mathit \pi}^{+}}$ ($3.945$ $\pm0.030$) $ \times 10^{-2}$ 1.2
Γ44 ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}_S^0}$ ${{\mathit \pi}^{0}}$ ($1.240$ $\pm0.022$) $ \times 10^{-2}$ 
Γ49 ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}_S^0}$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ ($2.86$ $\pm0.16$) $ \times 10^{-2}$ 1.1
Γ64 ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}^{-}}{{\mathit \pi}^{+}}{{\mathit \pi}^{0}}$ ($14.4$ $\pm0.6$) $ \times 10^{-2}$ 2.2
Γ83 ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}^{-}}$2 ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ ($8.22$ $\pm0.14$) $ \times 10^{-2}$ 1.1
Γ94 ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}_S^0}$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit \pi}^{0}}$ ($5.3$ $\pm0.6$) $ \times 10^{-2}$ 
Γ100 ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}^{-}}$2 ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit \pi}^{0}}$ ($4.3$ $\pm0.4$) $ \times 10^{-2}$ 
Γ109 ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}^{-}}{{\mathit \pi}^{+}}{{\mathit \eta}}$ ($1.88$ $\pm0.05$) $ \times 10^{-2}$ 1.4
Γ123 ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}_S^0}$ ${{\mathit \eta}}$ ($5.08$ $\pm0.13$) $ \times 10^{-3}$ 
Γ124 ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}_S^0}$ ${{\mathit \omega}}$ ($1.11$ $\pm0.06$) $ \times 10^{-2}$ 
Γ125 ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}_S^0}$ ${{\mathit \eta}^{\,'}{(958)}}$ ($9.51$ $\pm0.32$) $ \times 10^{-3}$ 
Γ139 ${{\mathit D}^{0}}$ $\rightarrow$ 3 ${{\mathit K}_S^0}$  ($7.6$ $\pm0.7$) $ \times 10^{-4}$ 1.4
Γ146 ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ ($1.453$ $\pm0.024$) $ \times 10^{-3}$ 1.4
Γ147 ${{\mathit D}^{0}}$ $\rightarrow$ 2 ${{\mathit \pi}^{0}}$ ($8.26$ $\pm0.25$) $ \times 10^{-4}$ 
Γ148 ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit \pi}^{0}}$ ($1.49$ $\pm0.07$) $ \times 10^{-2}$ 2.3
Γ166 ${{\mathit D}^{0}}$ $\rightarrow$ 2 ${{\mathit \pi}^{+}}$2 ${{\mathit \pi}^{-}}$ ($7.55$ $\pm0.20$) $ \times 10^{-3}$ 
Γ195 ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit \eta}}{{\mathit \pi}^{0}}$ ($6.3$ $\pm0.6$) $ \times 10^{-4}$ 1.1
Γ215 ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit \eta}^{\,'}{(958)}}{{\mathit \pi}^{0}}$ ($9.2$ $\pm1.0$) $ \times 10^{-4}$ 
Γ217 ${{\mathit D}^{0}}$ $\rightarrow$ 2 ${{\mathit \eta}}$ ($2.11$ $\pm0.19$) $ \times 10^{-3}$ 2.3
Γ221 ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit \eta}}{{\mathit \eta}^{\,'}{(958)}}$ ($1.01$ $\pm0.19$) $ \times 10^{-3}$ 
Γ222 ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}^{+}}{{\mathit K}^{-}}$ ($4.08$ $\pm0.06$) $ \times 10^{-3}$ 1.6
Γ223 ${{\mathit D}^{0}}$ $\rightarrow$ 2 ${{\mathit K}_S^0}$  ($1.41$ $\pm0.05$) $ \times 10^{-4}$ 1.1
Γ224 ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}_S^0}$ ${{\mathit K}^{-}}{{\mathit \pi}^{+}}$ ($3.4$ $\pm0.5$) $ \times 10^{-3}$ 1.1
Γ235 ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}_S^0}$ ${{\mathit K}^{+}}{{\mathit \pi}^{-}}$ ($2.21$ $\pm0.34$) $ \times 10^{-3}$ 1.1
Γ296 ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit \phi}}{{\mathit \gamma}}$ ($2.81$ $\pm0.19$) $ \times 10^{-5}$ 
Γ300 ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}^{+}}{{\mathit \pi}^{-}}$ ($1.50$ $\pm0.07$) $ \times 10^{-4}$ 3.0
Γ307 ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}^{+}}{{\mathit \pi}^{-}}{{\mathit \pi}^{0}}$ ($3.06$ $\pm0.16$) $ \times 10^{-4}$ 1.4

 
An overall fit to 3 branching ratios uses 3 measurements and one constraint to determine 4 parameters. The overall fit has a $\chi {}^{2}$ = 0.0 for 0 degrees of freedom.
 
The following off-diagonal array elements are the correlation coefficients <$\mathit \delta $x$_{i}\delta $x$_{j}$> $/$ ($\mathit \delta $x$_{i}\cdot{}\delta $x$_{j}$), in percent, from the fit to parameters ${{\mathit p}_{{{i}}}}$, including the branching fractions, $\mathit x_{i}$ = $\Gamma _{i}$ $/$ $\Gamma _{total}$.
 
 x1 100
 x2  100
 x3   100
 x4    100
   x1  x2  x3  x4
 
    Mode Fraction (Γi / Γ)Scale factor

Γ1 ${{\mathit D}^{0}}$ $\rightarrow$ 0-prongs ($15$ $\pm6$) $ \times 10^{-2}$ 
Γ2 ${{\mathit D}^{0}}$ $\rightarrow$ 2-prongs ($71$ $\pm6$) $ \times 10^{-2}$ 
Γ3 ${{\mathit D}^{0}}$ $\rightarrow$ 4-prongs ($14.6$ $\pm0.5$) $ \times 10^{-2}$ 
Γ4 ${{\mathit D}^{0}}$ $\rightarrow$ 6-prongs ($6.5$ $\pm1.3$) $ \times 10^{-4}$