CONSTRAINED FIT INFORMATIONshow precise values?

 
An overall fit to 64 branching ratios uses 126 measurements and one constraint to determine 32 parameters. The overall fit has a $\chi {}^{2}$ = 141.9 for 95 degrees of freedom.
 
The following off-diagonal array elements are the correlation coefficients <$\mathit \delta $x$_{i}$~$\delta $x$_{j}$> $/$ ($\mathit \delta $x$_{i}\cdot{}\delta $x$_{j}$), in percent, from the fit to parameters ${{\mathit p}_{{i}}}$, including the branching fractions, $\mathit x_{i}$ =$\Gamma _{i}$ $/$ $\Gamma _{total}$. The fit constrains the ${{\mathit x}_{{i}}}$ whose labels appear in this array to sum to one.
 
 x6  100
 x19   100
 x20    100
 x21     100
 x29      100
 x30       100
 x33        100
 x34         100
 x36          100
 x51           100
 x68            100
 x96             100
 x100              100
 x114               100
 x115                100
 x116                 100
 x131                  100
 x138                   100
 x139                    100
 x140                     100
 x158                      100
 x186                       100
 x194                        100
 x196                         100
 x199                          100
 x200                           100
 x201                            100
 x202                             100
 x213                              100
 x267                               100
 x271                                100
 x341                                 100
   x6  x19  x20  x21  x29  x30  x33  x34  x36  x51  x68  x96  x100  x114  x115  x116  x131  x138  x139  x140  x158  x186  x194  x196  x199  x200  x201  x202  x213  x267  x271  x341
 
  Mode Fraction (Γi / Γ)Scale factor

Γ6  ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit \mu}^{+}}$ anything $0.068$ $\pm0.006$ 
Γ19  ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}^{-}}{{\mathit e}^{+}}{{\mathit \nu}_{{e}}}$  $0.03542$ $\pm0.00035$ 1.3
Γ20  ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}^{-}}{{\mathit \mu}^{+}}{{\mathit \nu}_{{\mu}}}$  $0.0341$ $\pm0.0004$ 1.0
Γ21  ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}^{*}{(892)}^{-}}{{\mathit e}^{+}}{{\mathit \nu}_{{e}}}$  $0.0215$ $\pm0.0016$ 
Γ29  ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit \pi}^{-}}{{\mathit e}^{+}}{{\mathit \nu}_{{e}}}$  $0.00291$ $\pm0.00004$ 1.0
Γ30  ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit \pi}^{-}}{{\mathit \mu}^{+}}{{\mathit \nu}_{{\mu}}}$  $0.00267$ $\pm0.00012$ 1.3
Γ33  ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}^{-}}{{\mathit \pi}^{+}}$  $0.03950$ $\pm0.00031$ 1.2
Γ34  ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}_S^0}$ ${{\mathit \pi}^{0}}$  $0.01240$ $\pm0.00022$ 
Γ36  ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}_S^0}$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$  $0.0280$ $\pm0.0018$ 1.1
Γ51  ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}^{-}}{{\mathit \pi}^{+}}{{\mathit \pi}^{0}}$  $0.144$ $\pm0.005$ 2.0
Γ68  ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}^{-}}$2 ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$  $0.0823$ $\pm0.0014$ 1.1
Γ96  ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}_S^0}$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit \pi}^{0}}$  $0.052$ $\pm0.006$ 
Γ100  ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}^{-}}$2 ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit \pi}^{0}}$  $0.043$ $\pm0.004$ 
Γ114  ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}_S^0}$ ${{\mathit \eta}}$  $0.00509$ $\pm0.00013$ 
Γ115  ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}_S^0}$ ${{\mathit \omega}}$  $0.0111$ $\pm0.0006$ 
Γ116  ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}_S^0}$ ${{\mathit \eta}^{\,'}{(958)}}$  $0.00949$ $\pm0.00032$ 
Γ131  ${{\mathit D}^{0}}$ $\rightarrow$ 3 ${{\mathit K}_S^0}$  ($7.5$ $\pm0.7$) $ \times 10^{-4}$ 1.4
Γ138  ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$  $0.001455$ $\pm0.000024$ 1.3
Γ139  ${{\mathit D}^{0}}$ $\rightarrow$ 2 ${{\mathit \pi}^{0}}$  ($8.26$ $\pm0.25$) $ \times 10^{-4}$ 
Γ140  ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit \pi}^{0}}$  $0.0149$ $\pm0.0006$ 2.1
Γ158  ${{\mathit D}^{0}}$ $\rightarrow$ 2 ${{\mathit \pi}^{+}}$2 ${{\mathit \pi}^{-}}$  $0.00756$ $\pm0.00020$ 
Γ186  ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit \eta}}{{\mathit \pi}^{0}}$  ($6.3$ $\pm0.6$) $ \times 10^{-4}$ 1.1
Γ194  ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit \eta}^{\,'}{(958)}}{{\mathit \pi}^{0}}$  ($9.2$ $\pm1.0$) $ \times 10^{-4}$ 
Γ196  ${{\mathit D}^{0}}$ $\rightarrow$ 2 ${{\mathit \eta}}$  $0.00211$ $\pm0.00019$ 2.2
Γ199  ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit \eta}}{{\mathit \eta}^{\,'}{(958)}}$  $0.00101$ $\pm0.00019$ 
Γ200  ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}^{+}}{{\mathit K}^{-}}$  $0.00408$ $\pm0.00006$ 1.6
Γ201  ${{\mathit D}^{0}}$ $\rightarrow$ 2 ${{\mathit K}_S^0}$  ($1.41$ $\pm0.05$) $ \times 10^{-4}$ 1.1
Γ202  ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}_S^0}$ ${{\mathit K}^{-}}{{\mathit \pi}^{+}}$  $0.0033$ $\pm0.0005$ 1.1
Γ213  ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}_S^0}$ ${{\mathit K}^{+}}{{\mathit \pi}^{-}}$  $0.00217$ $\pm0.00034$ 1.1
Γ267  ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit \phi}}{{\mathit \gamma}}$  ($2.81$ $\pm0.19$) $ \times 10^{-5}$ 
Γ271  ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}^{+}}{{\mathit \pi}^{-}}$  ($1.50$ $\pm0.07$) $ \times 10^{-4}$ 3.0
Γ341  ${{\mathit D}^{0}}$ $\rightarrow$ Unaccounted decay modes $0.369$ $\pm0.012$ 1.1

 
An overall fit to 3 branching ratios uses 3 measurements and one constraint to determine 4 parameters. The overall fit has a $\chi {}^{2}$ = 0.0 for 0 degrees of freedom.
 
The following off-diagonal array elements are the correlation coefficients <$\mathit \delta $x$_{i}$~$\delta $x$_{j}$> $/$ ($\mathit \delta $x$_{i}\cdot{}\delta $x$_{j}$), in percent, from the fit to parameters ${{\mathit p}_{{i}}}$, including the branching fractions, $\mathit x_{i}$ =$\Gamma _{i}$ $/$ $\Gamma _{total}$. The fit constrains the ${{\mathit x}_{{i}}}$ whose labels appear in this array to sum to one.
 
 x1  100
 x2   100
 x3    100
 x4     100
   x1  x2  x3  x4
 
  Mode Fraction (Γi / Γ)Scale factor

Γ1  ${{\mathit D}^{0}}$ $\rightarrow$ 0-prongs $0.15$ $\pm0.06$ 
Γ2  ${{\mathit D}^{0}}$ $\rightarrow$ 2-prongs $0.71$ $\pm0.06$ 
Γ3  ${{\mathit D}^{0}}$ $\rightarrow$ 4-prongs $0.146$ $\pm0.005$ 
Γ4  ${{\mathit D}^{0}}$ $\rightarrow$ 6-prongs ($6.5$ $\pm1.3$) $ \times 10^{-4}$