CONSTRAINED FIT INFORMATIONshow precise values?

 
An overall fit to 64 branching ratios uses 126 measurements and one constraint to determine 32 parameters. The overall fit has a $\chi {}^{2}$ = 141.9 for 95 degrees of freedom.
 
The following off-diagonal array elements are the correlation coefficients <$\mathit \delta $x$_{i}$~$\delta $x$_{j}$> $/$ ($\mathit \delta $x$_{i}\cdot{}\delta $x$_{j}$), in percent, from the fit to parameters ${{\mathit p}_{{i}}}$, including the branching fractions, $\mathit x_{i}$ =$\Gamma _{i}$ $/$ $\Gamma _{total}$. The fit constrains the ${{\mathit x}_{{i}}}$ whose labels appear in this array to sum to one.
 
 x6  100
 x19   100
 x20    100
 x21     100
 x30      100
 x31       100
 x35        100
 x36         100
 x38          100
 x53           100
 x70            100
 x81             100
 x85              100
 x99               100
 x100                100
 x101                 100
 x116                  100
 x123                   100
 x124                    100
 x125                     100
 x143                      100
 x171                       100
 x179                        100
 x181                         100
 x184                          100
 x185                           100
 x186                            100
 x187                             100
 x198                              100
 x252                               100
 x256                                100
 x322                                 100
   x6  x19  x20  x21  x30  x31  x35  x36  x38  x53  x70  x81  x85  x99  x100  x101  x116  x123  x124  x125  x143  x171  x179  x181  x184  x185  x186  x187  x198  x252  x256  x322
 
  Mode Fraction (Γi / Γ)Scale factor

Γ6  ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit \mu}^{+}}$ anything $0.068$ $\pm0.006$ 
Γ19  ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}^{-}}{{\mathit e}^{+}}{{\mathit \nu}_{{e}}}$  $0.03542$ $\pm0.00035$ 1.3
Γ20  ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}^{-}}{{\mathit \mu}^{+}}{{\mathit \nu}_{{\mu}}}$  $0.0341$ $\pm0.0004$ 1.0
Γ21  ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}^{*}{(892)}^{-}}{{\mathit e}^{+}}{{\mathit \nu}_{{e}}}$  $0.0215$ $\pm0.0016$ 
Γ30  ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit \pi}^{-}}{{\mathit e}^{+}}{{\mathit \nu}_{{e}}}$  $0.00291$ $\pm0.00004$ 1.0
Γ31  ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit \pi}^{-}}{{\mathit \mu}^{+}}{{\mathit \nu}_{{\mu}}}$  $0.00267$ $\pm0.00012$ 1.3
Γ35  ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}^{-}}{{\mathit \pi}^{+}}$  $0.03950$ $\pm0.00031$ 1.2
Γ36  ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}_S^0}$ ${{\mathit \pi}^{0}}$  $0.01240$ $\pm0.00022$ 
Γ38  ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}_S^0}$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$  $0.0280$ $\pm0.0018$ 1.1
Γ53  ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}^{-}}{{\mathit \pi}^{+}}{{\mathit \pi}^{0}}$  $0.144$ $\pm0.005$ 2.0
Γ70  ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}^{-}}$2 ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$  $0.0823$ $\pm0.0014$ 1.1
Γ81  ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}_S^0}$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit \pi}^{0}}$  $0.052$ $\pm0.006$ 
Γ85  ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}^{-}}$2 ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit \pi}^{0}}$  $0.043$ $\pm0.004$ 
Γ99  ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}_S^0}$ ${{\mathit \eta}}$  $0.00509$ $\pm0.00013$ 
Γ100  ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}_S^0}$ ${{\mathit \omega}}$  $0.0111$ $\pm0.0006$ 
Γ101  ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}_S^0}$ ${{\mathit \eta}^{\,'}{(958)}}$  $0.00949$ $\pm0.00032$ 
Γ116  ${{\mathit D}^{0}}$ $\rightarrow$ 3 ${{\mathit K}_S^0}$  ($7.5$ $\pm0.7$) $ \times 10^{-4}$ 1.4
Γ123  ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$  $0.001455$ $\pm0.000024$ 1.3
Γ124  ${{\mathit D}^{0}}$ $\rightarrow$ 2 ${{\mathit \pi}^{0}}$  ($8.26$ $\pm0.25$) $ \times 10^{-4}$ 
Γ125  ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit \pi}^{0}}$  $0.0149$ $\pm0.0006$ 2.1
Γ143  ${{\mathit D}^{0}}$ $\rightarrow$ 2 ${{\mathit \pi}^{+}}$2 ${{\mathit \pi}^{-}}$  $0.00756$ $\pm0.00020$ 
Γ171  ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit \eta}}{{\mathit \pi}^{0}}$  ($6.3$ $\pm0.6$) $ \times 10^{-4}$ 1.1
Γ179  ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit \eta}^{\,'}{(958)}}{{\mathit \pi}^{0}}$  ($9.2$ $\pm1.0$) $ \times 10^{-4}$ 
Γ181  ${{\mathit D}^{0}}$ $\rightarrow$ 2 ${{\mathit \eta}}$  $0.00211$ $\pm0.00019$ 2.2
Γ184  ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit \eta}}{{\mathit \eta}^{\,'}{(958)}}$  $0.00101$ $\pm0.00019$ 
Γ185  ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}^{+}}{{\mathit K}^{-}}$  $0.00408$ $\pm0.00006$ 1.6
Γ186  ${{\mathit D}^{0}}$ $\rightarrow$ 2 ${{\mathit K}_S^0}$  ($1.41$ $\pm0.05$) $ \times 10^{-4}$ 1.1
Γ187  ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}_S^0}$ ${{\mathit K}^{-}}{{\mathit \pi}^{+}}$  $0.0033$ $\pm0.0005$ 1.1
Γ198  ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}_S^0}$ ${{\mathit K}^{+}}{{\mathit \pi}^{-}}$  $0.00217$ $\pm0.00034$ 1.1
Γ252  ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit \phi}}{{\mathit \gamma}}$  ($2.81$ $\pm0.19$) $ \times 10^{-5}$ 
Γ256  ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}^{+}}{{\mathit \pi}^{-}}$  ($1.50$ $\pm0.07$) $ \times 10^{-4}$ 3.0
Γ322  ${{\mathit D}^{0}}$ $\rightarrow$ Unaccounted decay modes $0.369$ $\pm0.012$ 1.1

 
An overall fit to 3 branching ratios uses 3 measurements and one constraint to determine 4 parameters. The overall fit has a $\chi {}^{2}$ = 0.0 for 0 degrees of freedom.
 
The following off-diagonal array elements are the correlation coefficients <$\mathit \delta $x$_{i}$~$\delta $x$_{j}$> $/$ ($\mathit \delta $x$_{i}\cdot{}\delta $x$_{j}$), in percent, from the fit to parameters ${{\mathit p}_{{i}}}$, including the branching fractions, $\mathit x_{i}$ =$\Gamma _{i}$ $/$ $\Gamma _{total}$. The fit constrains the ${{\mathit x}_{{i}}}$ whose labels appear in this array to sum to one.
 
 x1  100
 x2   100
 x3    100
 x4     100
   x1  x2  x3  x4
 
  Mode Fraction (Γi / Γ)Scale factor

Γ1  ${{\mathit D}^{0}}$ $\rightarrow$ 0-prongs $0.15$ $\pm0.06$ 
Γ2  ${{\mathit D}^{0}}$ $\rightarrow$ 2-prongs $0.71$ $\pm0.06$ 
Γ3  ${{\mathit D}^{0}}$ $\rightarrow$ 4-prongs $0.146$ $\pm0.005$ 
Γ4  ${{\mathit D}^{0}}$ $\rightarrow$ 6-prongs ($6.5$ $\pm1.3$) $ \times 10^{-4}$