An overall fit to 85 branching ratios uses 169 measurements and one constraint to determine 46 parameters. The overall fit has a $\chi {}^{2}$ = 134.9 for 124 degrees of freedom.
The following off-diagonal array elements are the correlation coefficients <$\mathit \delta $x$_{i}$~$\delta $x$_{j}$> $/$ ($\mathit \delta $x$_{i}\cdot{}\delta $x$_{j}$), in percent, from the fit to parameters ${{\mathit p}_{{i}}}$, including the branching fractions, $\mathit x_{i}$ =$\Gamma _{i}$ $/$ $\Gamma _{total}$. The fit constrains the ${{\mathit x}_{{i}}}$ whose labels appear in this array to sum to one.
 x3  100
 x5   100
 x9    100
 x10     100
 x14      100
 x16       100
 x20        100
 x23         100
 x27          100
 x28           100
 x30            100
 x36             100
 x38              100
 x41               100
 x43                100
 x45                 100
 x48                  100
 x49                   100
 x52                    100
 x56                     100
 x61                      100
 x70                       100
 x78                        100
 x85                         100
 x89                          100
 x97                           100
 x103                            100
 x106                             100
 x107                              100
 x117                               100
 x118                                100
 x124                                 100
 x125                                  100
 x148                                   100
 x149                                    100
 x150                                     100
 x152                                      100
 x154                                       100
 x158                                        100
 x168                                         100
 x171                                          100
 x176                                           100
 x177                                            100
 x178                                             100
 x180                                              100
 x183                                               100
   x3  x5  x9  x10  x14  x16  x20  x23  x27  x28  x30  x36  x38  x41  x43  x45  x48  x49  x52  x56  x61  x70  x78  x85  x89  x97  x103  x106  x107  x117  x118  x124  x125  x148  x149  x150  x152  x154  x158  x168  x171  x176  x177  x178  x180  x183
  Mode Fraction (Γi / Γ)Scale factor

Γ3  ${{\mathit \tau}^{-}}$ $\rightarrow$ ${{\mathit \mu}^{-}}{{\overline{\mathit \nu}}_{{\mu}}}{{\mathit \nu}_{{\tau}}}$  $0.1739$ $\pm0.0004$ 
Γ5  ${{\mathit \tau}^{-}}$ $\rightarrow$ ${{\mathit e}^{-}}{{\overline{\mathit \nu}}_{{e}}}{{\mathit \nu}_{{\tau}}}$  $0.1782$ $\pm0.0004$ 
Γ9  ${{\mathit \tau}^{-}}$ $\rightarrow$ ${{\mathit \pi}^{-}}{{\mathit \nu}_{{\tau}}}$  $0.1082$ $\pm0.0005$ 
Γ10  ${{\mathit \tau}^{-}}$ $\rightarrow$ ${{\mathit K}^{-}}{{\mathit \nu}_{{\tau}}}$  $0.00696$ $\pm0.00010$ 
Γ14  ${{\mathit \tau}^{-}}$ $\rightarrow$ ${{\mathit \pi}^{-}}{{\mathit \pi}^{0}}{{\mathit \nu}_{{\tau}}}$  $0.2549$ $\pm0.0009$ 
Γ16  ${{\mathit \tau}^{-}}$ $\rightarrow$ ${{\mathit K}^{-}}{{\mathit \pi}^{0}}{{\mathit \nu}_{{\tau}}}$  $0.00433$ $\pm0.00015$ 
Γ20  ${{\mathit \tau}^{-}}$ $\rightarrow$ ${{\mathit \pi}^{-}}$2 ${{\mathit \pi}^{0}}{{\mathit \nu}_{{\tau}}}$ (ex.${{\mathit K}^{0}}$) $0.0926$ $\pm0.0010$ 
Γ23  ${{\mathit \tau}^{-}}$ $\rightarrow$ ${{\mathit K}^{-}}$2 ${{\mathit \pi}^{0}}{{\mathit \nu}_{{\tau}}}$ (ex.${{\mathit K}^{0}}$) ($6.5$ $\pm2.2$) $ \times 10^{-4}$ 
Γ27  ${{\mathit \tau}^{-}}$ $\rightarrow$ ${{\mathit \pi}^{-}}$3 ${{\mathit \pi}^{0}}{{\mathit \nu}_{{\tau}}}$ (ex.${{\mathit K}^{0}}$) $0.0104$ $\pm0.0007$ 
Γ28  ${{\mathit \tau}^{-}}$ $\rightarrow$ ${{\mathit K}^{-}}$3 ${{\mathit \pi}^{0}}{{\mathit \nu}_{{\tau}}}$ (ex.${{\mathit K}^{0}}$, ${{\mathit \eta}}$) ($4.8$ $\pm2.1$) $ \times 10^{-4}$ 
Γ30  ${{\mathit \tau}^{-}}$ $\rightarrow$ ${{\mathit h}^{-}}$4 ${{\mathit \pi}^{0}}{{\mathit \nu}_{{\tau}}}$ (ex.${{\mathit K}^{0}},{{\mathit \eta}}$) $0.0011$ $\pm0.0004$ 
Γ36  ${{\mathit \tau}^{-}}$ $\rightarrow$ ${{\mathit \pi}^{-}}{{\overline{\mathit K}}^{0}}{{\mathit \nu}_{{\tau}}}$  $0.00840$ $\pm0.00014$ 
Γ38  ${{\mathit \tau}^{-}}$ $\rightarrow$ ${{\mathit K}^{-}}{{\mathit K}^{0}}{{\mathit \nu}_{{\tau}}}$  $0.00148$ $\pm0.00005$ 
Γ41  ${{\mathit \tau}^{-}}$ $\rightarrow$ ${{\mathit \pi}^{-}}{{\overline{\mathit K}}^{0}}{{\mathit \pi}^{0}}{{\mathit \nu}_{{\tau}}}$  $0.00382$ $\pm0.00013$ 
Γ43  ${{\mathit \tau}^{-}}$ $\rightarrow$ ${{\mathit K}^{-}}{{\mathit K}^{0}}{{\mathit \pi}^{0}}{{\mathit \nu}_{{\tau}}}$  $0.00150$ $\pm0.00007$ 
Γ45  ${{\mathit \tau}^{-}}$ $\rightarrow$ ${{\mathit \pi}^{-}}{{\overline{\mathit K}}^{0}}{{\mathit \pi}^{0}}{{\mathit \pi}^{0}}{{\mathit \nu}_{{\tau}}}$ (ex.${{\mathit K}^{0}}$) ($2.6$ $\pm2.3$) $ \times 10^{-4}$ 
Γ48  ${{\mathit \tau}^{-}}$ $\rightarrow$ ${{\mathit \pi}^{-}}{{\mathit K}_S^0}$ ${{\mathit K}_S^0}$ ${{\mathit \nu}_{{\tau}}}$  ($2.33$ $\pm0.07$) $ \times 10^{-4}$ 
Γ49  ${{\mathit \tau}^{-}}$ $\rightarrow$ ${{\mathit \pi}^{-}}{{\mathit K}_S^0}$ ${{\mathit K}_L^0}$ ${{\mathit \nu}_{{\tau}}}$  $0.00108$ $\pm0.00024$ 
Γ52  ${{\mathit \tau}^{-}}$ $\rightarrow$ ${{\mathit \pi}^{-}}{{\mathit K}_S^0}$ ${{\mathit K}_S^0}$ ${{\mathit \pi}^{0}}{{\mathit \nu}_{{\tau}}}$  ($1.82$ $\pm0.21$) $ \times 10^{-5}$ 
Γ56  ${{\mathit \tau}^{-}}$ $\rightarrow$ ${{\mathit \pi}^{-}}{{\mathit K}_S^0}$ ${{\mathit K}_L^0}$ ${{\mathit \pi}^{0}}{{\mathit \nu}_{{\tau}}}$  ($3.2$ $\pm1.2$) $ \times 10^{-4}$ 
Γ61  ${{\mathit \tau}^{-}}$ $\rightarrow$ ${{\mathit K}^{0}}{{\mathit h}^{+}}{{\mathit h}^{-}}{{\mathit h}^{-}}{{\mathit \nu}_{{\tau}}}$  ($2.5$ $\pm2.0$) $ \times 10^{-4}$ 
Γ70  ${{\mathit \tau}^{-}}$ $\rightarrow$ ${{\mathit \pi}^{-}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit \nu}_{{\tau}}}$ (ex.${{\mathit K}^{0}},{{\mathit \omega}}$) $0.0899$ $\pm0.0005$ 
Γ78  ${{\mathit \tau}^{-}}$ $\rightarrow$ ${{\mathit \pi}^{-}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit \pi}^{0}}{{\mathit \nu}_{{\tau}}}$ (ex.${{\mathit K}^{0}},{{\mathit \omega}}$) $0.0274$ $\pm0.0007$ 
Γ85  ${{\mathit \tau}^{-}}$ $\rightarrow$ ${{\mathit h}^{-}}{{\mathit h}^{-}}{{\mathit h}^{+}}$2 ${{\mathit \pi}^{0}}{{\mathit \nu}_{{\tau}}}$ (ex.${{\mathit K}^{0}},{{\mathit \omega}},{{\mathit \eta}}$) $0.0010$ $\pm0.0004$ 
Γ89  ${{\mathit \tau}^{-}}$ $\rightarrow$ 2 ${{\mathit \pi}^{-}}{{\mathit \pi}^{+}}$3 ${{\mathit \pi}^{0}}{{\mathit \nu}_{{\tau}}}$ (ex.${{\mathit K}^{0}}$, ${{\mathit \eta}}$, ${{\mathit \omega}}$, ${{\mathit f}_{{1}}{(1285)}}$)  ($1.4$ $\pm2.7$) $ \times 10^{-5}$ 
Γ97  ${{\mathit \tau}^{-}}$ $\rightarrow$ ${{\mathit K}^{-}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit \nu}_{{\tau}}}$ (ex.${{\mathit K}^{0}},{{\mathit \omega}}$) $0.00293$ $\pm0.00007$ 
Γ103  ${{\mathit \tau}^{-}}$ $\rightarrow$ ${{\mathit K}^{-}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit \pi}^{0}}{{\mathit \nu}_{{\tau}}}$ (ex.${{\mathit K}^{0}},{{\mathit \omega}},{{\mathit \eta}}$) ($3.9$ $\pm1.4$) $ \times 10^{-4}$ 
Γ106  ${{\mathit \tau}^{-}}$ $\rightarrow$ ${{\mathit K}^{-}}{{\mathit K}^{+}}{{\mathit \pi}^{-}}{{\mathit \nu}_{{\tau}}}$  $0.001435$ $\pm0.000027$ 
Γ107  ${{\mathit \tau}^{-}}$ $\rightarrow$ ${{\mathit K}^{-}}{{\mathit K}^{+}}{{\mathit \pi}^{-}}{{\mathit \pi}^{0}}{{\mathit \nu}_{{\tau}}}$  ($6.1$ $\pm1.8$) $ \times 10^{-5}$ 
Γ117  ${{\mathit \tau}^{-}}$ $\rightarrow$ 3 ${{\mathit \pi}^{-}}$2 ${{\mathit \pi}^{+}}{{\mathit \nu}_{{\tau}}}$ (ex.${{\mathit K}^{0}}$, ${{\mathit \omega}}$, ${{\mathit f}_{{1}}{(1285)}}$) ($7.69$ $\pm0.30$) $ \times 10^{-4}$ 
Γ118  ${{\mathit \tau}^{-}}$ $\rightarrow$ ${{\mathit K}^{-}}$2 ${{\mathit \pi}^{-}}$2 ${{\mathit \pi}^{+}}{{\mathit \nu}_{{\tau}}}$ (ex.${{\mathit K}^{0}}$) ($6$ $\pm12$) $ \times 10^{-7}$ 
Γ124  ${{\mathit \tau}^{-}}$ $\rightarrow$ 3 ${{\mathit \pi}^{-}}$2 ${{\mathit \pi}^{+}}{{\mathit \pi}^{0}}{{\mathit \nu}_{{\tau}}}$ (ex.${{\mathit K}^{0}}$, ${{\mathit \eta}}$, ${{\mathit \omega}}$, ${{\mathit f}_{{1}}{(1285)}}$) ($3.8$ $\pm0.9$) $ \times 10^{-5}$ 
Γ125  ${{\mathit \tau}^{-}}$ $\rightarrow$ ${{\mathit K}^{-}}$2 ${{\mathit \pi}^{-}}$2 ${{\mathit \pi}^{+}}{{\mathit \pi}^{0}}{{\mathit \nu}_{{\tau}}}$ (ex.${{\mathit K}^{0}}$) ($1.1$ $\pm0.6$) $ \times 10^{-6}$ 
Γ148  ${{\mathit \tau}^{-}}$ $\rightarrow$ ${{\mathit \eta}}{{\mathit \pi}^{-}}{{\mathit \pi}^{0}}{{\mathit \nu}_{{\tau}}}$  $0.00139$ $\pm0.00007$ 
Γ149  ${{\mathit \tau}^{-}}$ $\rightarrow$ ${{\mathit \eta}}{{\mathit \pi}^{-}}{{\mathit \pi}^{0}}{{\mathit \pi}^{0}}{{\mathit \nu}_{{\tau}}}$  ($1.9$ $\pm0.4$) $ \times 10^{-4}$ 
Γ150  ${{\mathit \tau}^{-}}$ $\rightarrow$ ${{\mathit \eta}}{{\mathit K}^{-}}{{\mathit \nu}_{{\tau}}}$  ($1.55$ $\pm0.08$) $ \times 10^{-4}$ 
Γ152  ${{\mathit \tau}^{-}}$ $\rightarrow$ ${{\mathit \eta}}{{\mathit K}^{-}}{{\mathit \pi}^{0}}{{\mathit \nu}_{{\tau}}}$  ($4.8$ $\pm1.2$) $ \times 10^{-5}$ 
Γ154  ${{\mathit \tau}^{-}}$ $\rightarrow$ ${{\mathit \eta}}{{\overline{\mathit K}}^{0}}{{\mathit \pi}^{-}}{{\mathit \nu}_{{\tau}}}$  ($9.4$ $\pm1.5$) $ \times 10^{-5}$ 
Γ158  ${{\mathit \tau}^{-}}$ $\rightarrow$ ${{\mathit \eta}}{{\mathit \pi}^{-}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit \nu}_{{\tau}}}$ (ex.${{\mathit K}^{0}}$) ($2.19$ $\pm0.13$) $ \times 10^{-4}$ 
Γ168  ${{\mathit \tau}^{-}}$ $\rightarrow$ ${{\mathit \phi}}{{\mathit K}^{-}}{{\mathit \nu}_{{\tau}}}$  ($4.4$ $\pm1.6$) $ \times 10^{-5}$ 
Γ171  ${{\mathit \tau}^{-}}$ $\rightarrow$ ${{\mathit f}_{{1}}{(1285)}}{{\mathit \pi}^{-}}{{\mathit \nu}_{{\tau}}}$ $\rightarrow$ 3 ${{\mathit \pi}^{-}}$2 ${{\mathit \pi}^{+}}{{\mathit \nu}_{{\tau}}}$  ($5.2$ $\pm0.4$) $ \times 10^{-5}$ 
Γ176  ${{\mathit \tau}^{-}}$ $\rightarrow$ ${{\mathit \pi}^{-}}{{\mathit \omega}}{{\mathit \nu}_{{\tau}}}$  $0.0195$ $\pm0.0006$ 
Γ177  ${{\mathit \tau}^{-}}$ $\rightarrow$ ${{\mathit K}^{-}}{{\mathit \omega}}{{\mathit \nu}_{{\tau}}}$  ($4.1$ $\pm0.9$) $ \times 10^{-4}$ 
Γ178  ${{\mathit \tau}^{-}}$ $\rightarrow$ ${{\mathit h}^{-}}{{\mathit \omega}}{{\mathit \pi}^{0}}{{\mathit \nu}_{{\tau}}}$  $0.0041$ $\pm0.0004$ 
Γ180  ${{\mathit \tau}^{-}}$ $\rightarrow$ ${{\mathit \pi}^{-}}{{\mathit \omega}}$2 ${{\mathit \pi}^{0}}{{\mathit \nu}_{{\tau}}}$  ($7.1$ $\pm1.6$) $ \times 10^{-5}$ 
Γ183  ${{\mathit \tau}^{-}}$ $\rightarrow$ 2 ${{\mathit \pi}^{-}}{{\mathit \pi}^{+}}{{\mathit \omega}}{{\mathit \nu}_{{\tau}}}$ (ex.${{\mathit K}^{0}}$) ($8.4$ $\pm0.6$) $ \times 10^{-5}$