CONSTRAINED FIT INFORMATIONshow precise values?

 
An overall fit to 34 branching ratios uses 89 measurements and one constraint to determine 22 parameters. The overall fit has a $\chi {}^{2}$ = 64.3 for 68 degrees of freedom.
 
The following off-diagonal array elements are the correlation coefficients <$\mathit \delta $x$_{i}$~$\delta $x$_{j}$> $/$ ($\mathit \delta $x$_{i}\cdot{}\delta $x$_{j}$), in percent, from the fit to parameters ${{\mathit p}_{{i}}}$, including the branching fractions, $\mathit x_{i}$ =$\Gamma _{i}$ $/$ $\Gamma _{total}$. The fit constrains the ${{\mathit x}_{{i}}}$ whose labels appear in this array to sum to one.
 
 x6  100
 x7   100
 x34    100
 x46     100
 x72      100
 x123       100
 x198        100
 x200         100
 x252          100
 x257           100
 x263            100
 x269             100
 x275              100
 x309               100
 x343                100
 x350                 100
 x364                  100
 x408                   100
 x439                    100
 x541                     100
 x546                      100
   x6  x7  x34  x46  x72  x123  x198  x200  x252  x257  x263  x269  x275  x309  x343  x350  x364  x408  x439  x541  x546
 
  Mode Fraction (Γi / Γ)Scale factor

Γ6  ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit D}^{*}{(2010)}^{-}}{{\mathit \ell}^{+}}{{\mathit \nu}_{{{{\mathit \ell}}}}}$  $0.0508$ $\pm0.0017$ 1.4
Γ7  ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit D}^{*}{(2010)}^{-}}{{\mathit \tau}^{+}}{{\mathit \nu}_{{\tau}}}$  $0.0157$ $\pm0.0009$ 1.1
Γ34  ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit D}^{-}}{{\mathit \pi}^{+}}$  $0.00252$ $\pm0.00013$ 1.1
Γ46  ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit D}^{-}}{{\mathit \pi}^{+}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$  $0.0060$ $\pm0.0007$ 1.1
Γ72  ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit D}_{{1}}{(2420)}^{-}}{{\mathit \pi}^{+}}$ , ${{\mathit D}_{{1}}^{-}}$ $\rightarrow$ ${{\mathit D}^{-}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$  ($9.9$ ${}^{+2.0}_{-2.5}$) $ \times 10^{-5}$ 
Γ123  ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit D}_{{s}}^{-}}{{\mathit K}^{+}}$  ($2.7$ $\pm0.5$) $ \times 10^{-5}$ 2.7
Γ198  ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit J / \psi}{(1S)}}{{\mathit K}^{0}}$  ($8.68$ $\pm0.30$) $ \times 10^{-4}$ 
Γ200  ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit J / \psi}{(1S)}}{{\mathit K}^{*}{(892)}^{0}}$  $0.00127$ $\pm0.00005$ 
Γ252  ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit \psi}{(2S)}}{{\mathit K}^{0}}$  ($5.8$ $\pm0.5$) $ \times 10^{-4}$ 
Γ257  ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit \psi}{(2S)}}{{\mathit K}^{*}{(892)}^{0}}$  ($5.9$ $\pm0.4$) $ \times 10^{-4}$ 1.0
Γ263  ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit \chi}_{{c1}}}{{\mathit K}^{*}{(892)}^{0}}$  ($2.38$ $\pm0.19$) $ \times 10^{-4}$ 1.2
Γ269  ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit \chi}_{{c2}}}{{\mathit K}^{*}{(892)}^{0}}$  ($4.9$ $\pm1.2$) $ \times 10^{-5}$ 1.1
Γ275  ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit K}^{+}}{{\mathit \pi}^{-}}$  ($1.96$ $\pm0.05$) $ \times 10^{-5}$ 
Γ309  ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit K}^{0}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$  ($4.97$ $\pm0.18$) $ \times 10^{-5}$ 
Γ343  ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit K}^{0}}{{\mathit K}^{-}}{{\mathit \pi}^{+}}$  ($6.7$ $\pm0.5$) $ \times 10^{-6}$ 
Γ350  ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit K}^{0}}{{\mathit K}^{+}}{{\mathit K}^{-}}$  ($2.68$ $\pm0.11$) $ \times 10^{-5}$ 
Γ364  ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit K}^{*}{(892)}^{0}}{{\mathit \phi}}$  ($1.00$ $\pm0.05$) $ \times 10^{-5}$ 
Γ408  ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$  ($5.12$ $\pm0.19$) $ \times 10^{-6}$ 
Γ439  ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit \rho}^{0}}{{\mathit \rho}^{0}}$  ($9.6$ $\pm1.5$) $ \times 10^{-7}$ 
Γ541  ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit K}^{0}}{{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$  ($3.39$ $\pm0.34$) $ \times 10^{-7}$ 
Γ546  ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit K}^{*}{(892)}^{0}}{{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$  ($9.4$ $\pm0.5$) $ \times 10^{-7}$