CONSTRAINED FIT INFORMATIONshow precise values?

 
An overall fit to 34 branching ratios uses 87 measurements and one constraint to determine 22 parameters. The overall fit has a $\chi {}^{2}$ = 65.5 for 66 degrees of freedom.
 
The following off-diagonal array elements are the correlation coefficients <$\mathit \delta $x$_{i}$~$\delta $x$_{j}$> $/$ ($\mathit \delta $x$_{i}\cdot{}\delta $x$_{j}$), in percent, from the fit to parameters ${{\mathit p}_{{i}}}$, including the branching fractions, $\mathit x_{i}$ =$\Gamma _{i}$ $/$ $\Gamma _{total}$. The fit constrains the ${{\mathit x}_{{i}}}$ whose labels appear in this array to sum to one.
 
 x6  100
 x7   100
 x34    100
 x46     100
 x72      100
 x123       100
 x191        100
 x193         100
 x244          100
 x249           100
 x255            100
 x261             100
 x266              100
 x300               100
 x334                100
 x341                 100
 x355                  100
 x399                   100
 x430                    100
 x528                     100
 x533                      100
   x6  x7  x34  x46  x72  x123  x191  x193  x244  x249  x255  x261  x266  x300  x334  x341  x355  x399  x430  x528  x533
 
  Mode Fraction (Γi / Γ)Scale factor

Γ6  ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit D}^{*}{(2010)}^{-}}{{\mathit \ell}^{+}}{{\mathit \nu}_{{{{\mathit \ell}}}}}$  $0.0507$ $\pm0.0021$ 1.6
Γ7  ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit D}^{*}{(2010)}^{-}}{{\mathit \tau}^{+}}{{\mathit \nu}_{{\tau}}}$  $0.0157$ $\pm0.0010$ 1.1
Γ34  ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit D}^{-}}{{\mathit \pi}^{+}}$  $0.00252$ $\pm0.00013$ 1.1
Γ46  ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit D}^{-}}{{\mathit \pi}^{+}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$  $0.0060$ $\pm0.0007$ 1.1
Γ72  ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit D}_{{1}}{(2420)}^{-}}{{\mathit \pi}^{+}}$ , ${{\mathit D}_{{1}}^{-}}$ $\rightarrow$ ${{\mathit D}^{-}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$  ($9.9$ ${}^{+2.0}_{-2.5}$) $ \times 10^{-5}$ 
Γ123  ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit D}_{{s}}^{-}}{{\mathit K}^{+}}$  ($2.7$ $\pm0.5$) $ \times 10^{-5}$ 2.7
Γ191  ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit J / \psi}{(1S)}}{{\mathit K}^{0}}$  ($8.73$ $\pm0.32$) $ \times 10^{-4}$ 
Γ193  ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit J / \psi}{(1S)}}{{\mathit K}^{*}{(892)}^{0}}$  $0.00127$ $\pm0.00005$ 
Γ244  ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit \psi}{(2S)}}{{\mathit K}^{0}}$  ($5.8$ $\pm0.5$) $ \times 10^{-4}$ 
Γ249  ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit \psi}{(2S)}}{{\mathit K}^{*}{(892)}^{0}}$  ($5.9$ $\pm0.4$) $ \times 10^{-4}$ 1.0
Γ255  ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit \chi}_{{c1}}}{{\mathit K}^{*}{(892)}^{0}}$  ($2.38$ $\pm0.19$) $ \times 10^{-4}$ 1.2
Γ261  ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit \chi}_{{c2}}}{{\mathit K}^{*}{(892)}^{0}}$  ($4.9$ $\pm1.2$) $ \times 10^{-5}$ 1.1
Γ266  ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit K}^{+}}{{\mathit \pi}^{-}}$  ($1.96$ $\pm0.05$) $ \times 10^{-5}$ 
Γ300  ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit K}^{0}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$  ($4.94$ $\pm0.18$) $ \times 10^{-5}$ 
Γ334  ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit K}^{0}}{{\mathit K}^{-}}{{\mathit \pi}^{+}}$  ($6.2$ $\pm0.7$) $ \times 10^{-6}$ 
Γ341  ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit K}^{0}}{{\mathit K}^{+}}{{\mathit K}^{-}}$  ($2.67$ $\pm0.11$) $ \times 10^{-5}$ 
Γ355  ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit K}^{*}{(892)}^{0}}{{\mathit \phi}}$  ($1.00$ $\pm0.05$) $ \times 10^{-5}$ 
Γ399  ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$  ($5.12$ $\pm0.19$) $ \times 10^{-6}$ 
Γ430  ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit \rho}^{0}}{{\mathit \rho}^{0}}$  ($9.6$ $\pm1.5$) $ \times 10^{-7}$ 
Γ528  ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit K}^{0}}{{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$  ($3.39$ $\pm0.34$) $ \times 10^{-7}$ 
Γ533  ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit K}^{*}{(892)}^{0}}{{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$  ($9.4$ $\pm0.5$) $ \times 10^{-7}$