${{\boldsymbol N}}$ BARYONS
($\boldsymbol S$ = 0, $\boldsymbol I$ = 1/2)
${{\mathit p}}$, ${{\mathit N}^{+}}$ = ${\mathit {\mathit u}}$ ${\mathit {\mathit u}}$ ${\mathit {\mathit d}}$; ${{\mathit n}}$, ${{\mathit N}^{0}}$ = ${\mathit {\mathit u}}$ ${\mathit {\mathit d}}$ ${\mathit {\mathit d}}$
INSPIRE search

${{\boldsymbol N}{(1520)}}$ $I(J^P)$ = $1/2(3/2^{-})$

Older and obsolete values are listed and referenced in the 2014 edition, Chinese Physics C38 070001 (2014).
${{\boldsymbol N}{(1520)}}$ POLE POSITION
REAL PART   $1505\text{ to }1515\text{ }(\approx1510) $ MeV 
$-2{\times }$IMAGINARY PART   $105\text{ to }120\text{ }(\approx110) $ MeV 
${{\boldsymbol N}{(1520)}}$ ELASTIC POLE RESIDUE
MODULUS $\vert \mathit r\vert $   $32\text{ to }38\text{ }(\approx35) $ MeV 
PHASE $\theta $   $-15\text{ to }-5\text{ }(\approx-10) $ $^\circ{}$ 
${{\boldsymbol N}{(1520)}}$ INELASTIC POLE RESIDUE
Normalized residue in ${{\mathit N}}$ ${{\mathit \pi}}$ $\rightarrow$ ${{\mathit N}{(1520)}}$ $\rightarrow$ ${{\mathit \Delta}}{{\mathit \pi}}$ , ${\mathit S}{\mathrm -wave}$
Normalized residue in ${{\mathit N}}$ ${{\mathit \pi}}$ $\rightarrow$ ${{\mathit N}{(1520)}}$ $\rightarrow$ ${{\mathit \Delta}}{{\mathit \pi}}$ , ${\mathit D}{\mathrm -wave}$
Normalized residue in ${{\mathit N}}$ ${{\mathit \pi}}$ $\rightarrow$ ${{\mathit N}{(1520)}}$ $\rightarrow$ ${{\mathit N}}{{\mathit \eta}}$
Normalized residue in ${{\mathit N}}$ ${{\mathit \pi}}$ $\rightarrow$ ${{\mathit N}{(1520)}}$ $\rightarrow$ ${{\mathit \Lambda}}{{\mathit K}}$
Normalized residue in ${{\mathit N}}$ ${{\mathit \pi}}$ $\rightarrow$ ${{\mathit N}{(1520)}}$ $\rightarrow$ ${{\mathit \Sigma}}{{\mathit K}}$
Normalized residue in ${{\mathit N}}$ ${{\mathit \pi}}$ $\rightarrow$ ${{\mathit N}{(1520)}}$ $\rightarrow$ ${{\mathit N}}{{\mathit \sigma}}$
${{\mathit N}{(1520)}}$ BREIT-WIGNER MASS   $1510\text{ to }1520\text{ }(\approx1515) $ MeV 
${{\mathit N}{(1520)}}$ BREIT-WIGNER WIDTH   $100\text{ to }120\text{ }(\approx110) $ MeV 
${{\boldsymbol N}{(1520)}}$ PHOTON DECAY AMPLITUDES AT THE POLE
${{\mathit N}{(1520)}}$ $\rightarrow$ ${{\mathit p}}{{\mathit \gamma}}$ , helicity-1/2 amplitude A$_{1/2}$
${{\mathit N}{(1520)}}$ $\rightarrow$ ${{\mathit p}}{{\mathit \gamma}}$ , helicity-3/2 amplitude A$_{3/2}$
${{\boldsymbol N}{(1520)}}$ BREIT-WIGNER PHOTON DECAY AMPLITUDES
${{\mathit N}{(1520)}}$ $\rightarrow$ ${{\mathit p}}{{\mathit \gamma}}$ , helicity-1/2 amplitude A$_{1/2}$   $-0.030\text{ to }-0.015\text{ }(\approx-0.025) $ GeV${}^{−1/2}$ 
${{\mathit N}{(1520)}}$ $\rightarrow$ ${{\mathit p}}{{\mathit \gamma}}$ , helicity-3/2 amplitude A$_{3/2}$   $0.135\text{ to }0.145\text{ }(\approx0.140) $ GeV${}^{−1/2}$ 
${{\mathit N}{(1520)}}$ $\rightarrow$ ${{\mathit n}}{{\mathit \gamma}}$ , helicity-1/2 amplitude A$_{1/2}$   $-0.055\text{ to }-0.040\text{ }(\approx-0.050) $ GeV${}^{−1/2}$ 
${{\mathit N}{(1520)}}$ $\rightarrow$ ${{\mathit n}}{{\mathit \gamma}}$ , helicity-3/2 amplitude A$_{3/2}$   $-0.120\text{ to }-0.100\text{ }(\approx-0.115) $ GeV${}^{−1/2}$ 
The following branching fractions are our estimates, not fits or averages.
$\Gamma_{1}$ ${{\mathit N}}{{\mathit \pi}}$ $55 - 65\%$453
$\Gamma_{2}$ ${{\mathit N}}{{\mathit \eta}}$ $0.07 - 0.09\%$142
$\Gamma_{3}$ ${{\mathit N}}{{\mathit \pi}}{{\mathit \pi}}$ $25 - 35\%$410
$\Gamma_{4}$ ${{\mathit \Delta}{(1232)}}{{\mathit \pi}}$ $22 - 34\%$225
$\Gamma_{5}$ ${{\mathit \Delta}{(1232)}}{{\mathit \pi}}$ , ${\mathit S}{\mathrm -wave}$ $15 - 23\%$225
$\Gamma_{6}$ ${{\mathit \Delta}{(1232)}}{{\mathit \pi}}$ , ${\mathit D}{\mathrm -wave}$ $7 - 11\%$225
$\Gamma_{7}$ ${{\mathit N}}{{\mathit \sigma}}$ $<$ 2$\%$
$\Gamma_{8}$ ${{\mathit p}}{{\mathit \gamma}}$ $0.31 - 0.52\%$467
$\Gamma_{9}$ ${{\mathit p}}{{\mathit \gamma}}$ , helicity=1/2 $0.01 - 0.02\%$467
$\Gamma_{10}$ ${{\mathit p}}{{\mathit \gamma}}$ , helicity=3/2 $0.30 - 0.50\%$467
$\Gamma_{11}$ ${{\mathit n}}{{\mathit \gamma}}$ $0.30 - 0.53\%$466
$\Gamma_{12}$ ${{\mathit n}}{{\mathit \gamma}}$ , helicity=1/2 $0.04 - 0.10\%$466
$\Gamma_{13}$ ${{\mathit n}}{{\mathit \gamma}}$ , helicity=3/2 $0.25 - 0.45\%$466