${{\boldsymbol \Sigma}}$ BARYONS
($\boldsymbol S$ = $-1$, $\boldsymbol I$ = 1)
${{\mathit \Sigma}^{+}}$ = ${\mathit {\mathit u}}$ ${\mathit {\mathit u}}$ ${\mathit {\mathit s}}$, ${{\mathit \Sigma}^{0}}$ = ${\mathit {\mathit u}}$ ${\mathit {\mathit d}}$ ${\mathit {\mathit s}}$, ${{\mathit \Sigma}^{-}}$ = ${\mathit {\mathit d}}$ ${\mathit {\mathit d}}$ ${\mathit {\mathit s}}$
INSPIRE search

${{\boldsymbol \Sigma}{(1940)}}$ $I(J^P)$ = $1(3/2^{-})$

For results published before 1974 (they are now obsolete), see our 1982 edition Physics Letters 111B 1 (1982). Not all analyses require this state. It is not required by the GOYAL 1977 analysis of ${{\mathit K}^{-}}$ ${{\mathit n}}$ $\rightarrow$ nor by the GOPAL 1980 analysis of ${{\mathit K}^{-}}$ ${{\mathit n}}$ $\rightarrow$ ${{\mathit K}^{-}}{{\mathit n}}$ . See also HEMINGWAY 1975 .
${{\mathit \Sigma}{(1940)}}$ MASS   $1900\text{ to }1950\text{ }(\approx1940) $ MeV 
${{\mathit \Sigma}{(1940)}}$ WIDTH   $150\text{ to }300\text{ }(\approx220) $ MeV 
$\Gamma_{1}$ ${{\mathit N}}{{\overline{\mathit K}}}$ $<20\%$637
$\Gamma_{2}$ ${{\mathit \Lambda}}{{\mathit \pi}}$ seen640
$\Gamma_{3}$ ${{\mathit \Sigma}}{{\mathit \pi}}$ seen595
$\Gamma_{4}$ ${{\mathit \Sigma}{(1385)}}{{\mathit \pi}}$ seen463
$\Gamma_{5}$ ${{\mathit \Sigma}{(1385)}}{{\mathit \pi}}$ , ${\mathit S}{\mathrm -wave}$ 463
$\Gamma_{6}$ ${{\mathit \Lambda}{(1520)}}{{\mathit \pi}}$ seen355
$\Gamma_{7}$ ${{\mathit \Lambda}{(1520)}}{{\mathit \pi}}$ , ${\mathit P}{\mathrm -wave}$ 355
$\Gamma_{8}$ ${{\mathit \Lambda}{(1520)}}{{\mathit \pi}}$ , ${\mathit F}{\mathrm -wave}$ 355
$\Gamma_{9}$ ${{\mathit \Delta}{(1232)}}{{\overline{\mathit K}}}$ seen410
$\Gamma_{10}$ ${{\mathit \Delta}{(1232)}}{{\overline{\mathit K}}}$ , ${\mathit S}{\mathrm -wave}$ 410
$\Gamma_{11}$ ${{\mathit \Delta}{(1232)}}{{\overline{\mathit K}}}$ , ${\mathit D}{\mathrm -wave}$ 410
$\Gamma_{12}$ ${{\mathit N}}{{\overline{\mathit K}}^{*}{(892)}}$ seen322
$\Gamma_{13}$ ${{\mathit N}}{{\overline{\mathit K}}^{*}{(892)}}$ , $\mathit S$=3/2, ${\mathit S}{\mathrm -wave}$ 322