${{\boldsymbol \Sigma}}$ BARYONS
($\boldsymbol S$ = $-1$, $\boldsymbol I$ = 1)
${{\mathit \Sigma}^{+}}$ = ${\mathit {\mathit u}}$ ${\mathit {\mathit u}}$ ${\mathit {\mathit s}}$, ${{\mathit \Sigma}^{0}}$ = ${\mathit {\mathit u}}$ ${\mathit {\mathit d}}$ ${\mathit {\mathit s}}$, ${{\mathit \Sigma}^{-}}$ = ${\mathit {\mathit d}}$ ${\mathit {\mathit d}}$ ${\mathit {\mathit s}}$
INSPIRE search

${{\boldsymbol \Sigma}{(1770)}}$ $I(J^P)$ = $1(1/2^{+})$

Evidence for this state now rests solely on solution 1 of BAILLON 1975 , (see the footnotes) but the ${{\mathit \Lambda}}{{\mathit \pi}}$ partial-wave amplitudes of this solution are in disagreement with amplitudes from most other ${{\mathit \Lambda}}{{\mathit \pi}}$ analyses. ZHANG 2013A finds no evidence for this state.
${{\boldsymbol \Sigma}{(1770)}}$ POLE POSITION
REAL PART
$-2{\times }$IMAGINARY PART
${{\boldsymbol \Sigma}{(1770)}}$ POLE RESIDUES
Normalized residue in ${{\mathit N}}$ ${{\overline{\mathit K}}}$ $\rightarrow$ ${{\mathit \Sigma}{(1770)}}$ $\rightarrow$ ${{\mathit N}}{{\overline{\mathit K}}}$
Normalized residue in ${{\mathit N}}$ ${{\overline{\mathit K}}}$ $\rightarrow$ ${{\mathit \Sigma}{(1770)}}$ $\rightarrow$ ${{\mathit \Sigma}}{{\mathit \pi}}$
Normalized residue in ${{\mathit N}}$ ${{\overline{\mathit K}}}$ $\rightarrow$ ${{\mathit \Sigma}{(1770)}}$ $\rightarrow$ ${{\mathit \Lambda}}{{\mathit \pi}}$
Normalized residue in ${{\mathit N}}$ ${{\overline{\mathit K}}}$ $\rightarrow$ ${{\mathit \Sigma}{(1770)}}$ $\rightarrow$ ${{\mathit \Sigma}{(1385)}}{{\mathit \pi}}$
${{\mathit \Sigma}{(1770)}}$ MASS   $\approx1770$ MeV 
${{\mathit \Sigma}{(1770)}}$ WIDTH
$\Gamma_{1}$ ${{\mathit N}}{{\overline{\mathit K}}}$ 504
$\Gamma_{2}$ ${{\mathit \Lambda}}{{\mathit \pi}}$ 521
$\Gamma_{3}$ ${{\mathit \Sigma}}{{\mathit \pi}}$ 472
$\Gamma_{4}$ ${{\mathit \Sigma}{(1385)}}{{\mathit \pi}}$ 323
$\Gamma_{5}$ ${{\mathit N}}{{\overline{\mathit K}}^{*}{(892)}}$ , $\mathit S$=1/2, ${\mathit P}{\mathrm -wave}$ -1
$\Gamma_{6}$ ${{\mathit N}}{{\overline{\mathit K}}^{*}{(892)}}$ , $\mathit S$=3/2, ${\mathit P}{\mathrm -wave}$ -1