${{\boldsymbol \Delta}}$ BARYONS
($\boldsymbol S$ = 0, $\boldsymbol I$ = 3/2)
${{\mathit \Delta}^{++}}$ = ${{\mathit u}}{{\mathit u}}{{\mathit u}}$ , ${{\mathit \Delta}^{+}}$ = ${\mathit {\mathit u}}$ ${\mathit {\mathit u}}$ ${\mathit {\mathit d}}$, ${{\mathit \Delta}^{0}}$ = ${\mathit {\mathit u}}$ ${\mathit {\mathit d}}$ ${\mathit {\mathit d}}$, ${{\mathit \Delta}^{-}}$ = ${\mathit {\mathit d}}$ ${\mathit {\mathit d}}$ ${\mathit {\mathit d}}$
INSPIRE search

${{\boldsymbol \Delta}{(1920)}}$ $I(J^P)$ = $3/2(3/2^{+})$

Older and obsolete values are listed and referenced in the 2014 edition, Chinese Physics C38 070001 (2014).
${{\boldsymbol \Delta}{(1920)}}$ POLE POSITION
REAL PART   $1850\text{ to }1950\text{ }(\approx1900) $ MeV 
$-2{\times }$IMAGINARY PART   $200\text{ to }400\text{ }(\approx300) $ MeV 
${{\boldsymbol \Delta}{(1920)}}$ ELASTIC POLE RESIDUE
MODULUS $\vert \mathit r\vert $   $8\text{ to }24\text{ }(\approx16) $ MeV 
PHASE $\theta $   $-150\text{ to }-50\text{ }(\approx-100) $ $^\circ{}$ 
${{\boldsymbol \Delta}{(1920)}}$ INELASTIC POLE RESIDUE
Normalized residue in ${{\mathit N}}$ ${{\mathit \pi}}$ $\rightarrow$ ${{\mathit \Delta}{(1920)}}$ $\rightarrow$ ${{\mathit \Delta}}{{\mathit \eta}}$
Normalized residue in ${{\mathit N}}$ ${{\mathit \pi}}$ $\rightarrow$ ${{\mathit \Delta}{(1920)}}$ $\rightarrow$ ${{\mathit \Sigma}}{{\mathit K}}$
Normalized residue in ${{\mathit N}}$ ${{\mathit \pi}}$ $\rightarrow$ ${{\mathit \Delta}{(1920)}}$ $\rightarrow$ ${{\mathit \Delta}}{{\mathit \pi}}$ , ${\mathit P}{\mathrm -wave}$
Normalized residue in ${{\mathit N}}$ ${{\mathit \pi}}$ $\rightarrow$ ${{\mathit \Delta}{(1920)}}$ $\rightarrow$ ${{\mathit \Delta}}{{\mathit \pi}}$ , ${\mathit F}{\mathrm -wave}$
Normalized residue in ${{\mathit N}}$ ${{\mathit \pi}}$ $\rightarrow$ ${{\mathit \Delta}{(1920)}}$ $\rightarrow$ ${{\mathit N}{(1535)}}{{\mathit \pi}}$
Normalized residue in ${{\mathit N}}$ ${{\mathit \pi}}$ $\rightarrow$ ${{\mathit \Delta}{(1920)}}$ $\rightarrow$ ${{\mathit N}}{{\mathit a}_{{0}}{(980)}}$
Normalized residue in ${{\mathit N}}$ ${{\mathit \pi}}$ $\rightarrow$ ${{\mathit \Delta}{(1920)}}$ $\rightarrow$ ${{\mathit N}{(1440)}}{{\mathit \pi}}$
Normalized residue in ${{\mathit N}}$ ${{\mathit \pi}}$ $\rightarrow$ ${{\mathit \Delta}{(1920)}}$ $\rightarrow$ ${{\mathit N}{(1520)}}{{\mathit \pi}}$ , ${\mathit S}{\mathrm -wave}$
${{\mathit \Delta}{(1920)}}$ BREIT-WIGNER MASS   $1870\text{ to }1970\text{ }(\approx1920) $ MeV 
${{\mathit \Delta}{(1920)}}$ BREIT-WIGNER WIDTH   $240\text{ to }360\text{ }(\approx300) $ MeV 
${{\boldsymbol \Delta}{(1920)}}$ PHOTON DECAY AMPLITUDES AT THE POLE
${{\mathit \Delta}{(1920)}}$ $\rightarrow$ ${{\mathit N}}{{\mathit \gamma}}$ , helicity-1/2 amplitude A$_{1/2}$
${{\mathit \Delta}{(1920)}}$ $\rightarrow$ ${{\mathit N}}{{\mathit \gamma}}$ , helicity-3/2 amplitude A$_{3/2}$
${{\boldsymbol \Delta}{(1920)}}$ BREIT-WIGNER PHOTON DECAY AMPLITUDES
${{\mathit \Delta}{(1920)}}$ $\rightarrow$ ${{\mathit N}}{{\mathit \gamma}}$ , helicity-1/2 amplitude A$_{1/2}$
${{\mathit \Delta}{(1920)}}$ $\rightarrow$ ${{\mathit N}}{{\mathit \gamma}}$ , helicity-3/2 amplitude A$_{3/2}$
The following branching fractions are our estimates, not fits or averages.
$\Gamma_{1}$ ${{\mathit N}}{{\mathit \pi}}$ 5$-20\%$723
$\Gamma_{2}$ ${{\mathit \Sigma}}{{\mathit K}}$ $2 - 6\%$431
$\Gamma_{3}$ ${{\mathit N}}{{\mathit \pi}}{{\mathit \pi}}$ 699
$\Gamma_{4}$ ${{\mathit \Delta}{(1232)}}{{\mathit \pi}}$ $50 - 90\%$553
$\Gamma_{5}$ ${{\mathit \Delta}{(1232)}}{{\mathit \pi}}$ , ${\mathit P}{\mathrm -wave}$ $8 - 28\%$553
$\Gamma_{6}$ ${{\mathit \Delta}{(1232)}}{{\mathit \pi}}$ , ${\mathit F}{\mathrm -wave}$ $44 - 72\%$553
$\Gamma_{7}$ ${{\mathit N}{(1440)}}{{\mathit \pi}}$ , ${\mathit P}{\mathrm -wave}$ $<4\%$403
$\Gamma_{8}$ ${{\mathit N}{(1520)}}{{\mathit \pi}}$ , ${\mathit S}{\mathrm -wave}$ $<5\%$341
$\Gamma_{9}$ ${{\mathit N}{(1535)}}{{\mathit \pi}}$ $<2\%$328
$\Gamma_{10}$ ${{\mathit N}}{{\mathit a}_{{0}}{(980)}}$ seen41
$\Gamma_{11}$ ${{\mathit \Delta}{(1232)}}{{\mathit \eta}}$ $5 - 17\%$336