CHARMED BARYONS($\boldsymbol C$ = $+1$) ${{\mathit \Lambda}_{{c}}^{+}}$ = ${{\mathit u}}{{\mathit d}}{{\mathit c}}$ , ${{\mathit \Sigma}_{{c}}^{++}}$ = ${{\mathit u}}{{\mathit u}}{{\mathit c}}$ , ${{\mathit \Sigma}_{{c}}^{+}}$ = ${{\mathit u}}{{\mathit d}}{{\mathit c}}$ , ${{\mathit \Sigma}_{{c}}^{0}}$ = ${{\mathit d}}{{\mathit d}}{{\mathit c}}$ ,${{\mathit \Xi}_{{c}}^{+}}$ = ${{\mathit u}}{{\mathit s}}{{\mathit c}}$ , ${{\mathit \Xi}_{{c}}^{0}}$ = ${{\mathit d}}{{\mathit s}}{{\mathit c}}$ , ${{\mathit \Omega}_{{c}}^{0}}$ = ${{\mathit s}}{{\mathit s}}{{\mathit c}}$ INSPIRE search

# ${{\boldsymbol \Lambda}_{{c}}{(2595)}^{+}}$ $I(J^P)$ = $0(1/2^{-})$

The ${{\mathit \Lambda}_{{c}}^{+}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ mode is largely, and perhaps entirely, ${{\mathit \Sigma}_{{c}}}{{\mathit \pi}}$ , which is just at threshold; since the ${{\mathit \Sigma}_{{c}}}$ has $\mathit J{}^{P} = 1/2{}^{+}$, the $\mathit J{}^{P}$ here is almost certainly ${}^{}1/2{}^{-}$. This result is in accord with the theoretical expectation that this is the charm counterpart of the strange ${{\mathit \Lambda}{(1405)}}$.
 ${{\mathit \Lambda}_{{c}}{(2595)}^{+}}$ MASS $2592.25 \pm0.28$ MeV
 ${{\mathit \Lambda}_{{c}}{(2595)}^{+}}–{{\mathit \Lambda}_{{c}}^{+}}$ MASS DIFFERENCE $305.79 \pm0.24$ MeV
 ${{\mathit \Lambda}_{{c}}{(2595)}^{+}}$ WIDTH $2.6 \pm0.6$ MeV
${{\mathit \Lambda}_{{c}}^{+}}{{\mathit \pi}}{{\mathit \pi}}$ and its submode ${{\mathit \Sigma}_{{c}}{(2455)}}{{\mathit \pi}}$ $-$ the latter just barely $-$ are the only strong decays allowed to an excited ${{\mathit \Lambda}_{{c}}^{+}}$ having this mass; and the submode seems to dominate.