LIGHT UNFLAVORED MESONS
($\mathit S$ = $\mathit C$ = $\mathit B$ = 0)
For $\mathit I = 1$ (${{\mathit \pi}}$, ${{\mathit b}}$, ${{\mathit \rho}}$, ${{\mathit a}}$): ${\mathit {\mathit u}}$ ${\mathit {\overline{\mathit d}}}$, (${\mathit {\mathit u}}$ ${\mathit {\overline{\mathit u}}}−{\mathit {\mathit d}}$ ${\mathit {\overline{\mathit d}}})/\sqrt {2 }$, ${\mathit {\mathit d}}$ ${\mathit {\overline{\mathit u}}}$;
for $\mathit I = 0$ (${{\mathit \eta}}$, ${{\mathit \eta}^{\,'}}$, ${{\mathit h}}$, ${{\mathit h}^{\,'}}$, ${{\mathit \omega}}$, ${{\mathit \phi}}$, ${{\mathit f}}$, ${{\mathit f}^{\,'}}$): ${\mathit {\mathit c}}_{{\mathrm {1}}}({{\mathit u}}{{\overline{\mathit u}}}$ $+$ ${{\mathit d}}{{\overline{\mathit d}}}$) $+$ ${\mathit {\mathit c}}_{{\mathrm {2}}}({{\mathit s}}{{\overline{\mathit s}}}$)
INSPIRE   JSON PDGID:
M009

${{\mathit \rho}{(770)}}$

$I^G(J^{PC})$ = $1^+(1^{- -})$ 
Expand/Collapse All
${{\mathit \rho}{(770)}}$ T-MATRIX POLE $\sqrt {\mathit s }$ $(761 - 765) - i (71 - 74)$ MeV 
 
▸  ${{\mathit \rho}{(770)}}$ MASS
${\mathit m}_{{{\mathit \rho}{(770)}^{0}}}-{\mathit m}_{{{\mathit \rho}{(770)}^{\pm}}}$ $-0.7$ $\pm0.8$ MeV (S = 1.5)
 
${\mathit m}_{{{\mathit \rho}{(770)}^{+}}}-{\mathit m}_{{{\mathit \rho}{(770)}^{-}}}$
 
${{\mathit \rho}{(770)}}$ RANGE PARAMETER $5.3^{+0.9}_{-0.7}$ GeV${}^{-1}$ 
 
▸  ${{\mathit \rho}{(770)}}$ WIDTH
${\Gamma}_{{\mathit \rho}{(770)}^{0}}-{\Gamma}_{{\mathit \rho}{(770)}^{\pm}}$ $0.3$ $\pm1.3$ MeV (S = 1.4)
 
${\Gamma}_{{\mathit \rho}{(770)}^{+}}-{\Gamma}_{{\mathit \rho}{(770)}^{-}}$ $1.8$ $\pm2.1$  
 
Mode  
Fraction ($\Gamma_i$ / $\Gamma$) Scale Factor/
Conf. Level
P(MeV/c)  
$\Gamma_{1}$ ${{\mathit \pi}}{{\mathit \pi}}$ $\sim100$ $\%$ 363
 
▸  ${{\mathit \rho}{(770)}^{\pm}}$ decays
▸  ${{\mathit \rho}{(770)}^{0}}$ decays
[1] As measured in ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit \rho}^{0}}$.
[2] As measured in ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit \pi}^{0}}$ and ${{\mathit \tau}}$ decays.
[3] The ${{\mathit e}^{+}}{{\mathit e}^{-}}$ branching fraction is from ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ experiments only. The ${{\mathit \omega}}{{\mathit \rho}}$ interference is then due to ${{\mathit \omega}}{{\mathit \rho}}$ mixing only, and is expected to be small. If ${{\mathit e}}{{\mathit \mu}}$ universality holds, $\Gamma\mathrm {({{\mathit \rho}^{0}} \rightarrow {{\mathit \mu}^{+}} {{\mathit \mu}^{-}})}$ = $\Gamma\mathrm {({{\mathit \rho}^{0}} \rightarrow {{\mathit e}^{+}} {{\mathit e}^{-}})}{\times }$ 0.99785.
[4] The ${{\mathit \omega}}{{\mathit \rho}}$ interference is then due to ${{\mathit \omega}}{{\mathit \rho}}$ mixing only, and is expected to be small. If ${{\mathit e}}{{\mathit \mu}}$ universality holds, $\Gamma\mathrm {({{\mathit \rho}^{0}} \rightarrow {{\mathit \mu}^{+}} {{\mathit \mu}^{-}})}$ = $\Gamma\mathrm {({{\mathit \rho}^{0}} \rightarrow {{\mathit e}^{+}} {{\mathit e}^{-}})}{\times }$ 0.99785.
Constrained Fit information