${\boldsymbol {\boldsymbol c}}$ ${\boldsymbol {\overline{\boldsymbol c}}}$ MESONS
(including possibly non- ${\boldsymbol {\boldsymbol q}}$ ${\boldsymbol {\overline{\boldsymbol q}}}$ states)
INSPIRE search

${{\boldsymbol \chi}_{{c2}}{(1P)}}$ $I^G(J^{PC})$ = $0^+(2^{+ +})$

See the Review on ``${{\mathit \psi}{(2S)}}$ and ${{\mathit \chi}_{{c}}}$ branching ratios'' before the ${{\mathit \chi}_{{c0}}{(1P)}}$ Listings.
${{\mathit \chi}_{{c2}}{(1P)}}$ MASS   $3556.17 \pm0.07$ MeV 
${{\mathit \chi}_{{c2}}{(1P)}}$ WIDTH   $1.97 \pm0.09$ MeV 
MULTIPOLE AMPLITUDES IN ${{\boldsymbol \chi}_{{c2}}{(1P)}}$ $\rightarrow$ ${{\boldsymbol \gamma}}{{\boldsymbol J / \psi}{(1S)}}$ RADIATIVE DECAY
$\mathit a_{2}$ = $\mathit M2/\sqrt {\mathit E1{}^{2}+\mathit M2{}^{2}+\mathit E3{}^{2} }$ Magnetic quadrupole fractional transition amplitude   $-0.110 \pm0.010$  
$\mathit a_{3}$ = $\mathit E3/\sqrt {\mathit E1{}^{2}+\mathit M2{}^{2}+\mathit E3{}^{2} }$ Electric octupole fractional transition amplitude   $-0.003 \pm0.010$  (S = 1.3)
MULTIPOLE AMPLITUDES IN ${{\boldsymbol \psi}{(2S)}}$ $\rightarrow$ ${{\boldsymbol \gamma}}{{\boldsymbol \chi}_{{c2}}{(1P)}}$ RADIATIVE DECAY
$\mathit b_{2}$ = $\mathit M2/\sqrt {\mathit E1{}^{2}+\mathit M2{}^{2}+\mathit E3{}^{2} }$ Magnetic quadrupole fractional transition amplitude   $0.019 \pm0.009$  (S = 1.4)
$\mathit b_{3}$ = $\mathit E3/\sqrt {\mathit E1{}^{2}+\mathit M2{}^{2}+\mathit E3{}^{2} }$ Electric octupole fractional transition amplitude   $-0.010 \pm0.006$  
MULTIPOLE AMPLITUDE RATIOS IN RADIATIVE DECAYS ${{\boldsymbol \psi}{(2S)}}$ $\rightarrow$ ${{\boldsymbol \gamma}}{{\boldsymbol \chi}_{{c2}}{(1P)}}$ and ${{\boldsymbol \chi}_{{c2}}}$ $\rightarrow$ ${{\boldsymbol \gamma}}{{\boldsymbol J / \psi}{(1S)}}$
$\mathit b_{2}/\mathit a_{2}$ Magnetic quadrupole transition amplitude ratio   $-0.11 \pm0.15$  
    constrained fit information