BOTTOM BARYONS
($\boldsymbol B$ = $-1$)
${{\mathit \Lambda}_{{b}}^{0}}$ = ${{\mathit u}}{{\mathit d}}{{\mathit b}}$ , ${{\mathit \Xi}_{{b}}^{0}}$ = ${{\mathit u}}{{\mathit s}}{{\mathit b}}$ , ${{\mathit \Xi}_{{b}}^{-}}$ = ${{\mathit d}}{{\mathit s}}{{\mathit b}}$ , ${{\mathit \Omega}_{{b}}^{-}}$ = ${{\mathit s}}{{\mathit s}}{{\mathit b}}$
INSPIRE search

${{\boldsymbol \Lambda}_{{b}}^{0}}$ $I(J^P)$ = $0(1/2^{+})$

In the quark model, a ${{\mathit \Lambda}_{{b}}^{0}}$ is an isospin-0 ${{\mathit u}}{{\mathit d}}{{\mathit b}}$ state. The lowest ${{\mathit \Lambda}_{{b}}^{0}}$ ought to have $\mathit J{}^{P} = 1/2{}^{+}$. None of $\mathit I$, $\mathit J$, or $\mathit P$ have actually been measured.
${{\boldsymbol \Lambda}_{{b}}^{0}}$ MASS
${\mathit m}_{{{\mathit \Lambda}_{{b}}^{0}}}$   $5619.60 \pm0.17$ MeV 
${\mathit m}_{{{\mathit \Lambda}_{{b}}^{0}}}–{\mathit m}_{{{\mathit B}^{0}}}$   $339.2 \pm1.4$ MeV 
${\mathit m}_{{{\mathit \Lambda}_{{b}}^{0}}}–{\mathit m}_{{{\mathit B}^{+}}}$   $339.72 \pm0.28$ MeV 
${{\mathit \Lambda}_{{b}}^{0}}$ MEAN LIFE   $(1.470 \pm0.010) \times 10^{-12}$ s 
${\mathit \tau}_{{{\mathit \Lambda}_{{b}}^{0}}}/{\mathit \tau}_{{{\overline{\mathit \Lambda}}_{{b}}^{0}}}$   $0.94 \pm0.04$  
${\boldsymbol \tau}_{{{\boldsymbol \Lambda}_{{b}}^{0}}}/{\boldsymbol \tau}_{{{\boldsymbol B}^{0}}}$ MEAN LIFE RATIO
${\mathit \tau}_{{{\mathit \Lambda}_{{b}}^{0}}}/{\mathit \tau}_{{{\mathit B}^{0}}}$ (direct measurements)   $0.964 \pm0.007$  
PARTIAL BRANCHING FRACTIONS IN ${{\boldsymbol \Lambda}_{{b}}}$ $\rightarrow$ ${{\boldsymbol \Lambda}}{{\boldsymbol \mu}^{+}}{{\boldsymbol \mu}^{-}}$
B( ${{\mathit \Lambda}_{{b}}}$ $\rightarrow$ ${{\mathit \Lambda}}{{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ ) (q${}^{2}<$ 2.0 GeV${}^{2}$/c${}^{4}$)   $(7.1 \pm2.7) \times 10^{-8}$  
B( ${{\mathit \Lambda}_{{b}}}$ $\rightarrow$ ${{\mathit \Lambda}}{{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ ) (2.0 $<$ q${}^{2}<$ 4.3 GeV${}^{2}$/c${}^{4}$)   $(2.8 {}^{+2.8}_{-2.1}) \times 10^{-8}$  
B( ${{\mathit \Lambda}_{{b}}}$ $\rightarrow$ ${{\mathit \Lambda}}{{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ ) (q${}^{2}<$ 4.3 GeV${}^{2}$/c${}^{4}$)   $(2.7 \pm2.7) \times 10^{-7}$  
B( ${{\mathit \Lambda}_{{b}}}$ $\rightarrow$ ${{\mathit \Lambda}}{{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ ) (4.0 $<$ q${}^{2}<$ 6.0 GeV${}^{2}$/c${}^{4}$)   $(0.4 {}^{+1.81}_{-0.20}) \times 10^{-8}$  
B( ${{\mathit \Lambda}_{{b}}}$ $\rightarrow$ ${{\mathit \Lambda}}{{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ ) (1.0 $<$ q${}^{2}<$ 6.0 GeV${}^{2}$/c${}^{4}$)   $(4.7 {}^{+3.1}_{-2.7}) \times 10^{-8}$  
B( ${{\mathit \Lambda}_{{b}}}$ $\rightarrow$ ${{\mathit \Lambda}}{{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ ) (6.0 $<$ q${}^{2}<$ 8.0 GeV${}^{2}$/c${}^{4}$)   $(5.0 \pm2.5) \times 10^{-8}$  
B( ${{\mathit \Lambda}_{{b}}}$ $\rightarrow$ ${{\mathit \Lambda}}{{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ ) (4.3 $<$ q${}^{2}<$ 8.68 GeV${}^{2}$/c${}^{4}$)   $(5 \pm7) \times 10^{-8}$  
B( ${{\mathit \Lambda}_{{b}}}$ $\rightarrow$ ${{\mathit \Lambda}}{{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ ) (10.09 $<$ q${}^{2}<$ 12.86 GeV${}^{2}$/c${}^{4}$)   $(2.2 \pm0.6) \times 10^{-7}$  
B( ${{\mathit \Lambda}_{{b}}}$ $\rightarrow$ ${{\mathit \Lambda}}{{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ ) (14.18 $<$ q${}^{2}<$ 16.0 GeV${}^{2}$/c${}^{4}$)   $(1.7 \pm0.5) \times 10^{-7}$  (S = 1.1)
B( ${{\mathit \Lambda}_{{b}}}$ $\rightarrow$ ${{\mathit \Lambda}}{{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ ) (16.0 $<$ q${}^{2}$ GeV${}^{2}$/c${}^{4}$)   $(7.0 \pm2.9) \times 10^{-7}$  
B( ${{\mathit \Lambda}_{{b}}}$ $\rightarrow$ ${{\mathit \Lambda}}{{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ ) (18.0 $<$ q${}^{2}<$ 20.0 GeV${}^{2}$/c${}^{4}$)   $(2.4 \pm0.6) \times 10^{-7}$  
B( ${{\mathit \Lambda}_{{b}}}$ $\rightarrow$ ${{\mathit \Lambda}}{{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ ) (15.0 $<$ q${}^{2}<$ 20.0 GeV${}^{2}$/c${}^{4}$)   $(6.0 \pm1.3) \times 10^{-7}$  
$\boldsymbol CP$ VIOLATION
$\mathit A_{CP}$( ${{\mathit \Lambda}_{{b}}}$ $\rightarrow$ ${{\mathit p}}{{\mathit \pi}^{-}}$ )   $0.06 \pm0.08$  
$\mathit A_{CP}$( ${{\mathit \Lambda}_{{b}}}$ $\rightarrow$ ${{\mathit p}}{{\mathit K}^{-}}$ )   $-0.10 \pm0.09$  
$\mathit A_{CP}$( ${{\mathit \Lambda}_{{b}}}$ $\rightarrow$ ${{\mathit p}}{{\overline{\mathit K}}^{0}}{{\mathit \pi}^{-}}$ )   $0.22 \pm0.13$  
$\Delta \mathit A_{CP}$( ${{\mathit J / \psi}}{{\mathit p}}{{\mathit \pi}^{-}}$ $/$ ${{\mathit K}^{-}}$ ) ${}\equiv$ $\mathit A_{CP}$( ${{\mathit J / \psi}}{{\mathit p}}{{\mathit \pi}^{-}}$ ) $−$ $\mathit A_{CP}$( ${{\mathit J / \psi}}{{\mathit p}}{{\mathit K}^{-}}$ )   $0.057 \pm0.027$  
$\mathit A_{CP}$( ${{\mathit \Lambda}_{{b}}}$ $\rightarrow$ ${{\mathit \Lambda}}{{\mathit K}^{+}}{{\mathit \pi}^{-}}$ )   $-0.53 \pm0.25$  
$\mathit A_{CP}$( ${{\mathit \Lambda}_{{b}}}$ $\rightarrow$ ${{\mathit \Lambda}}{{\mathit K}^{+}}{{\mathit K}^{-}}$ )   $-0.28 \pm0.12$  
$\Delta \mathit A_{CP}$( ${{\mathit \Lambda}_{{b}}^{0}}$ $\rightarrow$ ${{\mathit p}}{{\mathit K}^{-}}{{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ ) ${}\equiv$ $\mathit A_{CP}$( ${{\mathit p}}{{\mathit K}^{-}}{{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ ) $−$ $\mathit A_{CP}$( ${{\mathit p}}{{\mathit K}^{-}}{{\mathit J / \psi}}$ )   $-0.04 \pm0.05$  
$\mathit CP$ AND $\mathit T$ VIOLATION PARAMETERS
${{\mathit A}}_{c}({{\mathit \Lambda}}$)   $-0.22 \pm0.13$  
${{\mathit A}}_{s}({{\mathit \Lambda}}$)   $0.13 \pm0.13$  
${{\mathit A}}_{c}({{\mathit \phi}}$)   $-0.01 \pm0.12$  
${{\mathit A}}_{s}({{\mathit \phi}}$)   $-0.07 \pm0.12$  
a$_{P}$( ${{\mathit \Lambda}_{{b}}^{0}}$ $\rightarrow$ ${{\mathit p}}{{\mathit \pi}^{-}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ )   $-0.037 \pm0.015$  
a$_{P}$( ${{\mathit \Lambda}_{{b}}^{0}}$ $\rightarrow$ ${{\mathit p}}{{\mathit K}^{-}}{{\mathit K}^{+}}{{\mathit \pi}^{-}}$ )   $0.04 \pm0.05$  
a$_{CP}$( ${{\mathit \Lambda}_{{b}}^{0}}$ $\rightarrow$ ${{\mathit p}}{{\mathit \pi}^{-}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ )   $0.011 \pm0.015$  
a$_{CP}$( ${{\mathit \Lambda}_{{b}}^{0}}$ $\rightarrow$ ${{\mathit p}}{{\mathit K}^{-}}{{\mathit K}^{+}}{{\mathit \pi}^{-}}$ )   $-0.01 \pm0.05$  
a$_{P}$( ${{\mathit \Lambda}_{{b}}^{0}}$ $\rightarrow$ ${{\mathit p}}{{\mathit K}^{-}}{{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ )   $-0.05 \pm0.05$  
a$_{CP}$( ${{\mathit \Lambda}_{{b}}^{0}}$ $\rightarrow$ ${{\mathit p}}{{\mathit K}^{-}}{{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ )   $0.01 \pm0.05$  
${{\boldsymbol \Lambda}_{{b}}^{0}}$ DECAY PARAMETERS
$\alpha $ decay parameter for ${{\mathit \Lambda}_{{b}}}$ $\rightarrow$ ${{\mathit J / \psi}}{{\mathit \Lambda}}$   $0.18 \pm0.13$  
A${}^{{{\mathit \ell}}}_{FB}$( ${{\mathit \mu}}{{\mathit \mu}}$ ) in ${{\mathit \Lambda}_{{b}}}$ $\rightarrow$ ${{\mathit \Lambda}}{{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$   $-0.05 \pm0.09$  
A${}^{h}_{FB}$( ${{\mathit p}}{{\mathit \pi}}$ ) in ${{\mathit \Lambda}_{{b}}}$ $\rightarrow$ ${{\mathit \Lambda}}$( ${{\mathit p}}{{\mathit \pi}}$) ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$   $-0.29 \pm0.08$  
f$_{L}$( ${{\mathit \mu}}{{\mathit \mu}}$ ) longitudinal polarization fraction in ${{\mathit \Lambda}_{{b}}}$ $\rightarrow$ ${{\mathit \Lambda}}{{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$   $0.61 {}^{+0.11}_{-0.14}$  
FORWARD-BACKWARD ASYMMETRIES
A$_{FB}$( ${{\mathit \Lambda}_{{b}}^{0}}$ $\rightarrow$ ${{\mathit J / \psi}}{{\mathit \Lambda}}$ )   $0.04 \pm0.07$  
${{\mathit A}}_{P}({{\mathit \Lambda}_{{b}}^{0}}$)   $0.024 \pm0.016$  (S = 1.1)
The branching fractions B( ${{\mathit b}}$ -baryon $\rightarrow$ ${{\mathit \Lambda}}{{\mathit \ell}^{-}}{{\overline{\mathit \nu}}_{{{{\mathit \ell}}}}}$ anything) and B( ${{\mathit \Lambda}_{{b}}^{0}}$ $\rightarrow$ ${{\mathit \Lambda}_{{c}}^{+}}{{\mathit \ell}^{-}}{{\overline{\mathit \nu}}_{{{{\mathit \ell}}}}}$ anything) are not pure measurements because the underlying measured products of these with B( ${{\mathit b}}$ $\rightarrow$ ${{\mathit b}}$ -baryon) were used to determine B( ${{\mathit b}}$ $\rightarrow$ ${{\mathit b}}$ -baryon), as described in the note ``Production and Decay of ${{\mathit b}}$-Flavored Hadrons.''
For inclusive branching fractions, $\mathit e.g.,$ ${{\mathit \Lambda}_{{b}}}$ $\rightarrow$ ${{\overline{\mathit \Lambda}}_{{c}}}$ anything, the values usually are multiplicities, not branching fractions. They can be greater than one.
$\Gamma_{1}$ ${{\mathit J / \psi}{(1S)}}{{\mathit \Lambda}}{\times }$ B( ${{\mathit b}}$ $\rightarrow$ ${{\mathit \Lambda}_{{b}}^{0}}$ ) $(5.8\pm0.8)\times 10^{-5}$1740
$\Gamma_{2}$ ${{\mathit J / \psi}{(1S)}}{{\mathit \Lambda}}$ 1740
$\Gamma_{3}$ ${{\mathit \psi}{(2S)}}{{\mathit \Lambda}}$ 1298
$\Gamma_{4}$ ${{\mathit p}}{{\mathit D}^{0}}{{\mathit \pi}^{-}}$ $(6.3\pm0.7)\times 10^{-4}$2370
$\Gamma_{5}$ ${{\mathit \Lambda}_{{c}}{(2860)}^{+}}{{\mathit \pi}^{-}}$ , ${{\mathit \Lambda}_{{c}}^{+}}$ $\rightarrow$ ${{\mathit D}^{0}}{{\mathit p}}$ 
$\Gamma_{6}$ ${{\mathit \Lambda}_{{c}}{(2880)}^{+}}{{\mathit \pi}^{-}}$ , ${{\mathit \Lambda}_{{c}}^{+}}$ $\rightarrow$ ${{\mathit D}^{0}}{{\mathit p}}$ 
$\Gamma_{7}$ ${{\mathit \Lambda}_{{c}}{(2940)}^{+}}{{\mathit \pi}^{-}}$ , ${{\mathit \Lambda}_{{c}}^{+}}$ $\rightarrow$ ${{\mathit D}^{0}}{{\mathit p}}$ 
$\Gamma_{8}$ ${{\mathit p}}{{\mathit D}^{0}}{{\mathit K}^{-}}$ $(4.6\pm0.8)\times 10^{-5}$2269
$\Gamma_{9}$ ${{\mathit p}}{{\mathit J / \psi}}{{\mathit \pi}^{-}}$ $(2.6^{+0.5}_{-0.4})\times 10^{-5}$1755
$\Gamma_{10}$ ${{\mathit p}}{{\mathit \pi}^{-}}{{\mathit J / \psi}}$ , ${{\mathit J / \psi}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ $(1.6\pm0.8)\times 10^{-6}$
$\Gamma_{11}$ ${{\mathit p}}{{\mathit J / \psi}}{{\mathit K}^{-}}$ $(3.2^{+0.6}_{-0.5})\times 10^{-4}$1589
$\Gamma_{12}$ ${{\mathit P}_{{c}}{(4380)}^{+}}{{\mathit K}^{-}}$ , ${{\mathit P}_{{c}}}$ $\rightarrow$ ${{\mathit p}}{{\mathit J / \psi}}$ [1]$(2.7\pm1.4)\times 10^{-5}$
$\Gamma_{13}$ ${{\mathit P}_{{c}}{(4450)}^{+}}{{\mathit K}^{-}}$ , ${{\mathit P}_{{c}}}$ $\rightarrow$ ${{\mathit p}}{{\mathit J / \psi}}$ [1]$(1.3\pm0.4)\times 10^{-5}$
$\Gamma_{14}$ ${{\mathit \chi}_{{c1}}{(1P)}}{{\mathit p}}{{\mathit K}^{-}}$ $(7.6^{+1.5}_{-1.3})\times 10^{-5}$1242
$\Gamma_{15}$ ${{\mathit \chi}_{{c2}}{(1P)}}{{\mathit p}}{{\mathit K}^{-}}$ $(7.9^{+1.6}_{-1.4})\times 10^{-5}$1198
$\Gamma_{16}$ ${{\mathit p}}{{\mathit J / \psi}{(1S)}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit K}^{-}}$ $(6.6^{+1.3}_{-1.1})\times 10^{-5}$1410
$\Gamma_{17}$ ${{\mathit p}}{{\mathit \psi}{(2S)}}{{\mathit K}^{-}}$ $(6.6^{+1.2}_{-1.0})\times 10^{-5}$1063
$\Gamma_{18}$ ${{\mathit p}}{{\overline{\mathit K}}^{0}}{{\mathit \pi}^{-}}$ $(1.3\pm0.4)\times 10^{-5}$2693
$\Gamma_{19}$ ${{\mathit p}}{{\mathit K}^{0}}{{\mathit K}^{-}}$ $<3.5\times 10^{-6}$CL=90%2639
$\Gamma_{20}$ ${{\mathit \Lambda}_{{c}}^{+}}{{\mathit \pi}^{-}}$ $(4.9\pm0.4)\times 10^{-3}$S=1.2 2342
$\Gamma_{21}$ ${{\mathit \Lambda}_{{c}}^{+}}{{\mathit K}^{-}}$ $(3.59\pm0.30)\times 10^{-4}$S=1.2 2314
$\Gamma_{22}$ ${{\mathit \Lambda}_{{c}}^{+}}{{\mathit a}_{{1}}{(1260)}^{-}}$ seen2153
$\Gamma_{23}$ ${{\mathit \Lambda}_{{c}}^{+}}{{\mathit D}^{-}}$ $(4.6\pm0.6)\times 10^{-4}$1886
$\Gamma_{24}$ ${{\mathit \Lambda}_{{c}}^{+}}{{\mathit D}_{{s}}^{-}}$ $(1.10\pm0.10)\%$1833
$\Gamma_{25}$ ${{\mathit \Lambda}_{{c}}^{+}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit \pi}^{-}}$ $(7.7\pm1.1)\times 10^{-3}$S=1.1 2323
$\Gamma_{26}$ ${{\mathit \Lambda}_{{c}}{(2595)}^{+}}{{\mathit \pi}^{-}}$ , ${{\mathit \Lambda}_{{c}}{(2595)}^{+}}$ $\rightarrow$ ${{\mathit \Lambda}_{{c}}^{+}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ $(3.4\pm1.5)\times 10^{-4}$2210
$\Gamma_{27}$ ${{\mathit \Lambda}_{{c}}{(2625)}^{+}}{{\mathit \pi}^{-}}$ , ${{\mathit \Lambda}_{{c}}{(2625)}^{+}}$ $\rightarrow$ ${{\mathit \Lambda}_{{c}}^{+}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ $(3.3\pm1.3)\times 10^{-4}$2193
$\Gamma_{28}$ ${{\mathit \Sigma}_{{c}}{(2455)}^{0}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ , ${{\mathit \Sigma}_{{c}}^{0}}$ $\rightarrow$ ${{\mathit \Lambda}_{{c}}^{+}}{{\mathit \pi}^{-}}$ $(5.7\pm2.2)\times 10^{-4}$2265
$\Gamma_{29}$ ${{\mathit \Sigma}_{{c}}{(2455)}^{++}}{{\mathit \pi}^{-}}{{\mathit \pi}^{-}}$ , ${{\mathit \Sigma}_{{c}}^{++}}$ $\rightarrow$ ${{\mathit \Lambda}_{{c}}^{+}}{{\mathit \pi}^{+}}$ $(3.2\pm1.6)\times 10^{-4}$2265
$\Gamma_{30}$ ${{\mathit \Lambda}}{{\mathit K}^{0}}$2 ${{\mathit \pi}^{+}}$2 ${{\mathit \pi}^{-}}$ 2591
$\Gamma_{31}$ ${{\mathit \Lambda}_{{c}}^{+}}{{\mathit \ell}^{-}}{{\overline{\mathit \nu}}_{{{{\mathit \ell}}}}}$ anything [2]$(10.3\pm2.1)\%$
$\Gamma_{32}$ ${{\mathit \Lambda}_{{c}}^{+}}{{\mathit \ell}^{-}}{{\overline{\mathit \nu}}_{{{{\mathit \ell}}}}}$ $(6.2^{+1.4}_{-1.3})\%$S=1.0 2345
$\Gamma_{33}$ ${{\mathit \Lambda}_{{c}}^{+}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit \ell}^{-}}{{\overline{\mathit \nu}}_{{{{\mathit \ell}}}}}$ $(5.6\pm3.1)\%$2335
$\Gamma_{34}$ ${{\mathit \Lambda}_{{c}}{(2595)}^{+}}{{\mathit \ell}^{-}}{{\overline{\mathit \nu}}_{{{{\mathit \ell}}}}}$ $(7.9^{+4.0}_{-3.5})\times 10^{-3}$2212
$\Gamma_{35}$ ${{\mathit \Lambda}_{{c}}{(2625)}^{+}}{{\mathit \ell}^{-}}{{\overline{\mathit \nu}}_{{{{\mathit \ell}}}}}$ $(1.3^{+0.6}_{-0.5})\%$2195
$\Gamma_{36}$ ${{\mathit \Sigma}_{{c}}{(2455)}^{0}}{{\mathit \pi}^{+}}{{\mathit \ell}^{-}}{{\overline{\mathit \nu}}_{{{{\mathit \ell}}}}}$ 2272
$\Gamma_{37}$ ${{\mathit \Sigma}_{{c}}{(2455)}^{++}}{{\mathit \pi}^{-}}{{\mathit \ell}^{-}}{{\overline{\mathit \nu}}_{{{{\mathit \ell}}}}}$ 2272
$\Gamma_{38}$ ${{\mathit p}}{{\mathit h}^{-}}$ [3]$<2.3\times 10^{-5}$CL=90%2730
$\Gamma_{39}$ ${{\mathit p}}{{\mathit \pi}^{-}}$ $(4.2\pm0.8)\times 10^{-6}$2730
$\Gamma_{40}$ ${{\mathit p}}{{\mathit K}^{-}}$ $(5.1\pm0.9)\times 10^{-6}$2709
$\Gamma_{41}$ ${{\mathit p}}{{\mathit D}_{{s}}^{-}}$ $<4.8\times 10^{-4}$CL=90%2364
$\Gamma_{42}$ ${{\mathit p}}{{\mathit \mu}^{-}}{{\overline{\mathit \nu}}_{{\mu}}}$ $(4.1\pm1.0)\times 10^{-4}$2730
$\Gamma_{43}$ ${{\mathit \Lambda}}{{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ $(1.08\pm0.28)\times 10^{-6}$S=1.0 2695
$\Gamma_{44}$ ${{\mathit p}}{{\mathit \pi}^{-}}{{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ $(6.9\pm2.5)\times 10^{-8}$2720
$\Gamma_{45}$ ${{\mathit \Lambda}}{{\mathit \gamma}}$ $<1.3\times 10^{-3}$CL=90%2699
$\Gamma_{46}$ ${{\mathit \Lambda}^{0}}{{\mathit \eta}}$ $(9^{+7}_{-5})\times 10^{-6}$
$\Gamma_{47}$ ${{\mathit \Lambda}^{0}}{{\mathit \eta}^{\,'}{(958)}}$ $<3.1\times 10^{-6}$CL=90%
$\Gamma_{48}$ ${{\mathit \Lambda}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ $(4.6\pm1.9)\times 10^{-6}$2692
$\Gamma_{49}$ ${{\mathit \Lambda}}{{\mathit K}^{+}}{{\mathit \pi}^{-}}$ $(5.7\pm1.2)\times 10^{-6}$2660
$\Gamma_{50}$ ${{\mathit \Lambda}}{{\mathit K}^{+}}{{\mathit K}^{-}}$ $(1.61\pm0.23)\times 10^{-5}$2605
$\Gamma_{51}$ ${{\mathit \Lambda}^{0}}{{\mathit \phi}}$ $(9.2\pm2.5)\times 10^{-6}$
$\Gamma_{52}$ ${{\mathit p}}{{\mathit \pi}^{-}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ 2715
$\Gamma_{53}$ ${{\mathit p}}{{\mathit K}^{-}}{{\mathit K}^{+}}{{\mathit \pi}^{-}}$ 2612
    constrained fit information