BOTTOM BARYONS
($\mathit B$ = $-1$)

${{\mathit \Lambda}_{{b}}^{0}}$ = ${{\mathit u}}{{\mathit d}}{{\mathit b}}$ , ${{\mathit \Xi}_{{b}}^{0}}$ = ${{\mathit u}}{{\mathit s}}{{\mathit b}}$ , ${{\mathit \Xi}_{{b}}^{-}}$ = ${{\mathit d}}{{\mathit s}}{{\mathit b}}$ , ${{\mathit \Omega}_{{b}}^{-}}$ = ${{\mathit s}}{{\mathit s}}{{\mathit b}}$
INSPIRE search

${{\mathit \Lambda}_{{b}}^{0}}$ $I(J^P)$ = $0(1/2^{+})$

In the quark model, a ${{\mathit \Lambda}_{{b}}^{0}}$ is an isospin-0 ${{\mathit u}}{{\mathit d}}{{\mathit b}}$ state. The lowest ${{\mathit \Lambda}_{{b}}^{0}}$ ought to have $\mathit J{}^{P} = 1/2{}^{+}$. None of $\mathit I$, $\mathit J$, or $\mathit P$ have actually been measured.
${{\mathit \Lambda}_{{b}}^{0}}$ MEAN LIFE   $(1.470 \pm0.010) \times 10^{-12}$ s 
${\mathit \tau}_{{{\mathit \Lambda}_{{b}}^{0}}}/{\mathit \tau}_{{{\overline{\mathit \Lambda}}_{{b}}^{0}}}$   $0.94 \pm0.04$  
${\mathit \tau}_{{{\mathit \Lambda}_{{b}}^{0}}}/{\mathit \tau}_{{{\mathit B}^{0}}}$ MEAN LIFE RATIO
${\mathit \tau}_{{{\mathit \Lambda}_{{b}}^{0}}}/{\mathit \tau}_{{{\mathit B}^{0}}}$ (direct measurements)   $0.964 \pm0.007$  
$\mathit CP$ AND $\mathit T$ VIOLATION PARAMETERS
FORWARD-BACKWARD ASYMMETRIES
A$_{FB}$( ${{\mathit \Lambda}_{{b}}^{0}}$ $\rightarrow$ ${{\mathit J / \psi}}{{\mathit \Lambda}}$ )   $0.04 \pm0.07$  
The branching fractions B( ${{\mathit b}}$ -baryon $\rightarrow$ ${{\mathit \Lambda}}{{\mathit \ell}^{-}}{{\overline{\mathit \nu}}_{{{{\mathit \ell}}}}}$ anything) and B( ${{\mathit \Lambda}_{{b}}^{0}}$ $\rightarrow$ ${{\mathit \Lambda}_{{c}}^{+}}{{\mathit \ell}^{-}}{{\overline{\mathit \nu}}_{{{{\mathit \ell}}}}}$ anything) are not pure measurements because the underlying measured products of these with B( ${{\mathit b}}$ $\rightarrow$ ${{\mathit b}}$ -baryon) were used to determine B( ${{\mathit b}}$ $\rightarrow$ ${{\mathit b}}$ -baryon), as described in the note ``Production and Decay of ${{\mathit b}}$-Flavored Hadrons.''
For inclusive branching fractions, $\mathit e.g.,$ ${{\mathit \Lambda}_{{b}}}$ $\rightarrow$ ${{\overline{\mathit \Lambda}}_{{c}}}$ anything, the values usually are multiplicities, not branching fractions. They can be greater than one.
$\Gamma_{1}$ ${{\mathit J / \psi}{(1S)}}{{\mathit \Lambda}}{\times }$ B( ${{\mathit b}}$ $\rightarrow$ ${{\mathit \Lambda}_{{b}}^{0}}$ ) $(5.8\pm0.8)\times 10^{-5}$1740
$\Gamma_{2}$ ${{\mathit J / \psi}{(1S)}}{{\mathit \Lambda}}$ 1740
$\Gamma_{3}$ ${{\mathit \psi}{(2S)}}{{\mathit \Lambda}}$ 1298
$\Gamma_{4}$ ${{\mathit p}}{{\mathit D}^{0}}{{\mathit \pi}^{-}}$ $(6.5\pm0.7)\times 10^{-4}$2370
$\Gamma_{5}$ ${{\mathit p}}{{\mathit D}^{0}}{{\mathit K}^{-}}$ $(4.7\pm0.8)\times 10^{-5}$2269
$\Gamma_{6}$ ${{\mathit p}}{{\mathit J / \psi}}{{\mathit \pi}^{-}}$ $(2.6^{+0.5}_{-0.4})\times 10^{-5}$1755
$\Gamma_{7}$ ${{\mathit p}}{{\mathit J / \psi}}{{\mathit K}^{-}}$ $(3.2^{+0.6}_{-0.5})\times 10^{-4}$1589
$\Gamma_{8}$ ${{\mathit P}_{{c}}{(4380)}^{+}}{{\mathit K}^{-}}$ , ${{\mathit P}_{{c}}}$ $\rightarrow$ ${{\mathit p}}{{\mathit J / \psi}}$ [1]$(2.7\pm1.4)\times 10^{-5}$
$\Gamma_{9}$ ${{\mathit P}_{{c}}{(4450)}^{+}}{{\mathit K}^{-}}$ , ${{\mathit P}_{{c}}}$ $\rightarrow$ ${{\mathit p}}{{\mathit J / \psi}}$ [1]$(1.3\pm0.4)\times 10^{-5}$
$\Gamma_{10}$ ${{\mathit p}}{{\mathit J / \psi}{(1S)}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit K}^{-}}$ $(6.6^{+1.3}_{-1.1})\times 10^{-5}$1410
$\Gamma_{11}$ ${{\mathit p}}{{\mathit \psi}{(2S)}}{{\mathit K}^{-}}$ $(6.6^{+1.2}_{-1.0})\times 10^{-5}$1063
$\Gamma_{12}$ ${{\mathit p}}{{\overline{\mathit K}}^{0}}{{\mathit \pi}^{-}}$ $(1.3\pm0.4)\times 10^{-5}$2693
$\Gamma_{13}$ ${{\mathit p}}{{\mathit K}^{0}}{{\mathit K}^{-}}$ $<3.5\times 10^{-6}$CL=90%2639
$\Gamma_{14}$ ${{\mathit \Lambda}_{{c}}^{+}}{{\mathit \pi}^{-}}$ $(4.9\pm0.4)\times 10^{-3}$S=1.2 2342
$\Gamma_{15}$ ${{\mathit \Lambda}_{{c}}^{+}}{{\mathit K}^{-}}$ $(3.59\pm0.30)\times 10^{-4}$S=1.2 2314
$\Gamma_{16}$ ${{\mathit \Lambda}_{{c}}^{+}}{{\mathit a}_{{1}}{(1260)}^{-}}$ seen2153
$\Gamma_{17}$ ${{\mathit \Lambda}_{{c}}^{+}}{{\mathit D}^{-}}$ $(4.6\pm0.6)\times 10^{-4}$1886
$\Gamma_{18}$ ${{\mathit \Lambda}_{{c}}^{+}}{{\mathit D}_{{s}}^{-}}$ $(1.10\pm0.10)\%$1833
$\Gamma_{19}$ ${{\mathit \Lambda}_{{c}}^{+}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit \pi}^{-}}$ $(7.7\pm1.1)\times 10^{-3}$S=1.1 2323
$\Gamma_{20}$ ${{\mathit \Lambda}_{{c}}{(2595)}^{+}}{{\mathit \pi}^{-}}$ , ${{\mathit \Lambda}_{{c}}{(2595)}^{+}}$ $\rightarrow$ ${{\mathit \Lambda}_{{c}}^{+}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ $(3.4\pm1.5)\times 10^{-4}$2210
$\Gamma_{21}$ ${{\mathit \Lambda}_{{c}}{(2625)}^{+}}{{\mathit \pi}^{-}}$ , ${{\mathit \Lambda}_{{c}}{(2625)}^{+}}$ $\rightarrow$ ${{\mathit \Lambda}_{{c}}^{+}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ $(3.3\pm1.3)\times 10^{-4}$2193
$\Gamma_{22}$ ${{\mathit \Sigma}_{{c}}{(2455)}^{0}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ , ${{\mathit \Sigma}_{{c}}^{0}}$ $\rightarrow$ ${{\mathit \Lambda}_{{c}}^{+}}{{\mathit \pi}^{-}}$ $(5.7\pm2.2)\times 10^{-4}$2265
$\Gamma_{23}$ ${{\mathit \Sigma}_{{c}}{(2455)}^{++}}{{\mathit \pi}^{-}}{{\mathit \pi}^{-}}$ , ${{\mathit \Sigma}_{{c}}^{++}}$ $\rightarrow$ ${{\mathit \Lambda}_{{c}}^{+}}{{\mathit \pi}^{+}}$ $(3.2\pm1.6)\times 10^{-4}$2265
$\Gamma_{24}$ ${{\mathit \Lambda}}{{\mathit K}^{0}}$2 ${{\mathit \pi}^{+}}$2 ${{\mathit \pi}^{-}}$ 2591
$\Gamma_{25}$ ${{\mathit \Lambda}_{{c}}^{+}}{{\mathit \ell}^{-}}{{\overline{\mathit \nu}}_{{{{\mathit \ell}}}}}$ anything [2]$(10.4\pm2.2)\%$
$\Gamma_{26}$ ${{\mathit \Lambda}_{{c}}^{+}}{{\mathit \ell}^{-}}{{\overline{\mathit \nu}}_{{{{\mathit \ell}}}}}$ $(6.2^{+1.4}_{-1.3})\%$S=1.0 2345
$\Gamma_{27}$ ${{\mathit \Lambda}_{{c}}^{+}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit \ell}^{-}}{{\overline{\mathit \nu}}_{{{{\mathit \ell}}}}}$ $(5.6\pm3.1)\%$2335
$\Gamma_{28}$ ${{\mathit \Lambda}_{{c}}{(2595)}^{+}}{{\mathit \ell}^{-}}{{\overline{\mathit \nu}}_{{{{\mathit \ell}}}}}$ $(7.9^{+4.0}_{-3.5})\times 10^{-3}$2212
$\Gamma_{29}$ ${{\mathit \Lambda}_{{c}}{(2625)}^{+}}{{\mathit \ell}^{-}}{{\overline{\mathit \nu}}_{{{{\mathit \ell}}}}}$ $(1.3^{+0.6}_{-0.5})\%$2195
$\Gamma_{30}$ ${{\mathit \Sigma}_{{c}}{(2455)}^{0}}{{\mathit \pi}^{+}}{{\mathit \ell}^{-}}{{\overline{\mathit \nu}}_{{{{\mathit \ell}}}}}$ 2272
$\Gamma_{31}$ ${{\mathit \Sigma}_{{c}}{(2455)}^{++}}{{\mathit \pi}^{-}}{{\mathit \ell}^{-}}{{\overline{\mathit \nu}}_{{{{\mathit \ell}}}}}$ 2272
$\Gamma_{32}$ ${{\mathit p}}{{\mathit h}^{-}}$ [3]$<2.3\times 10^{-5}$CL=90%2730
$\Gamma_{33}$ ${{\mathit p}}{{\mathit \pi}^{-}}$ $(4.3\pm0.8)\times 10^{-6}$2730
$\Gamma_{34}$ ${{\mathit p}}{{\mathit K}^{-}}$ $(5.1\pm0.9)\times 10^{-6}$2709
$\Gamma_{35}$ ${{\mathit p}}{{\mathit D}_{{s}}^{-}}$ $<4.8\times 10^{-4}$CL=90%2364
$\Gamma_{36}$ ${{\mathit p}}{{\mathit \mu}^{-}}{{\overline{\mathit \nu}}_{{\mu}}}$ $(4.1\pm1.0)\times 10^{-4}$2730
$\Gamma_{37}$ ${{\mathit \Lambda}}{{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ $(1.08\pm0.28)\times 10^{-6}$S=1.0 2695
$\Gamma_{38}$ ${{\mathit \Lambda}}{{\mathit \gamma}}$ $<1.3\times 10^{-3}$CL=90%2699
$\Gamma_{39}$ ${{\mathit \Lambda}^{0}}{{\mathit \eta}}$ $(9^{+7}_{-5})\times 10^{-6}$
$\Gamma_{40}$ ${{\mathit \Lambda}^{0}}{{\mathit \eta}^{\,'}{(958)}}$ $<3.1\times 10^{-6}$CL=90%
$\Gamma_{41}$ ${{\mathit \Lambda}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ $(4.7\pm1.9)\times 10^{-6}$2692
$\Gamma_{42}$ ${{\mathit \Lambda}}{{\mathit K}^{+}}{{\mathit \pi}^{-}}$ $(5.7\pm1.3)\times 10^{-6}$2660
$\Gamma_{43}$ ${{\mathit \Lambda}}{{\mathit K}^{+}}{{\mathit K}^{-}}$ $(1.61\pm0.23)\times 10^{-5}$2605
$\Gamma_{44}$ ${{\mathit \Lambda}^{0}}{{\mathit \phi}}$ $(2.0\pm0.5)\times 10^{-6}$
$\Gamma_{45}$ ${{\mathit p}}{{\mathit \pi}^{-}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ 2715
$\Gamma_{46}$ ${{\mathit p}}{{\mathit K}^{-}}{{\mathit K}^{+}}{{\mathit \pi}^{-}}$ 2612
    constrained fit information