BOTTOM MESONS
($\boldsymbol B$ = $\pm1$)
${{\mathit B}^{+}}$ = ${\mathit {\mathit u}}$ ${\mathit {\overline{\mathit b}}}$, ${{\mathit B}^{0}}$ = ${\mathit {\mathit d}}$ ${\mathit {\overline{\mathit b}}}$, ${{\overline{\mathit B}}^{0}}$ = ${\mathit {\overline{\mathit d}}}$ ${\mathit {\mathit b}}$, ${{\mathit B}^{-}}$ = ${\mathit {\overline{\mathit u}}}$ ${\mathit {\mathit b}}$,
similarly for ${{\mathit B}^{*}}$'s
INSPIRE search

${{\boldsymbol B}^{0}}$ $I(J^P)$ = $1/2(0^{-})$

Quantum numbers not measured. Values shown are quark-model predictions. See also the ${{\mathit B}^{\pm}}/{{\mathit B}^{0}}$ ADMIXTURE and ${{\mathit B}^{\pm}}/{{\mathit B}^{0}}/{{\mathit B}_{{s}}^{0}}/{{\mathit b}}$-baryon ADMIXTURE sections. See the Note ``Production and Decay of ${{\mathit b}}$-flavored Hadrons'' at the beginning of the ${{\mathit B}^{\pm}}$ Particle Listings and the Note on ``${{\mathit B}^{0}}-{{\overline{\mathit B}}^{0}}$ Mixing'' near the end of the ${{\mathit B}^{0}}$ Particle Listings.
See related reviews:
Polarization in ${{\mathit B}}$ Decays
${{\mathit B}^{0}}$ $-$ ${{\overline{\mathit B}}^{0}}$ Mixing
${{\mathit B}^{0}}$ MASS   $5279.63 \pm0.15$ MeV (S = 1.1)
${\mathit m}_{{{\mathit B}^{0}}}–{\mathit m}_{{{\mathit B}^{+}}}$   $0.31 \pm0.06$ MeV 
${{\mathit B}^{0}}$ MEAN LIFE   $(152.0 \pm0.4) \times 10^{-14}$ s 
${\mathit \tau}_{{{\mathit B}^{0}}}/{\mathit \tau}_{{{\overline{\mathit B}}^{0}}}$   $1.000 \pm0.012$  
$\Delta \Gamma _{{{\mathit B}_{{d}}^{0}}}$ $/$ $\Gamma _{{{\mathit B}_{{d}}^{0}}}$   $-0.002 \pm0.010$  
PRODUCTION ASYMMETRIES
A$_{P}({{\mathit B}^{0}}$)   $-0.003 \pm0.006$  (S = 1.7)
${{\overline{\mathit B}}^{0}}$ modes are charge conjugates of the modes below. Reactions indicate the weak decay vertex and do not include mixing. Modes which do not identify the charge state of the ${{\mathit B}}$ are listed in the ${{\mathit B}^{\pm}}/{{\mathit B}^{0}}$ ADMIXTURE section.
The branching fractions listed below assume 50$\%$ ${{\mathit B}^{0}}{{\overline{\mathit B}}^{0}}$ and 50$\%$ ${{\mathit B}^{+}}{{\mathit B}^{-}}$ production at the ${{\mathit \Upsilon}{(4S)}}$. We have attempted to bring older measurements up to date by rescaling their assumed ${{\mathit \Upsilon}{(4S)}}$ production ratio to 50:50 and their assumed ${{\mathit D}}$, ${{\mathit D}_{{s}}}$, ${{\mathit D}^{*}}$, and ${{\mathit \psi}}$ branching ratios to current values whenever this would affect our averages and best limits significantly.
Indentation is used to indicate a subchannel of a previous reaction. All resonant subchannels have been corrected for resonance branching fractions to the final state so the sum of the subchannel branching fractions can exceed that of the final state.
For inclusive branching fractions, $\mathit e.g.,$ ${{\mathit B}}$ $\rightarrow$ ${{\mathit D}^{\pm}}$ anything, the values usually are multiplicities, not branching fractions. They can be greater than one.
$\Gamma_{1}$ ${{\mathit \ell}^{+}}{{\mathit \nu}_{{{{\mathit \ell}}}}}$ anything [1]$(10.33\pm{0.28})\%$
$\Gamma_{2}$ ${{\mathit e}^{+}}{{\mathit \nu}_{{e}}}{{\mathit X}_{{c}}}$ $(10.1\pm{0.4})\%$
$\Gamma_{3}$ ${{\mathit D}}{{\mathit \ell}^{+}}{{\mathit \nu}_{{{{\mathit \ell}}}}}$ anything $(9.1\pm{0.8})\%$
$\Gamma_{4}$ ${{\mathit D}^{-}}{{\mathit \ell}^{+}}{{\mathit \nu}_{{{{\mathit \ell}}}}}$ [1]$(2.20\pm{0.10})\%$2309
$\Gamma_{5}$ ${{\mathit D}^{-}}{{\mathit \tau}^{+}}{{\mathit \nu}_{{\tau}}}$ $(1.03\pm{0.22})\%$1909
$\Gamma_{6}$ ${{\mathit D}^{*}{(2010)}^{-}}{{\mathit \ell}^{+}}{{\mathit \nu}_{{{{\mathit \ell}}}}}$ [1]$(4.88\pm{0.10})\%$2257
$\Gamma_{7}$ ${{\mathit D}^{*}{(2010)}^{-}}{{\mathit \tau}^{+}}{{\mathit \nu}_{{\tau}}}$ $(1.67\pm{0.13})\%$S=1.1 1838
$\Gamma_{8}$ ${{\overline{\mathit D}}^{0}}{{\mathit \pi}^{-}}{{\mathit \ell}^{+}}{{\mathit \nu}_{{{{\mathit \ell}}}}}$ $(4.3\pm{0.6})\times 10^{-3}$2308
$\Gamma_{9}$ ${{\mathit D}_{{0}}^{*}{(2400)}^{-}}{{\mathit \ell}^{+}}{{\mathit \nu}_{{{{\mathit \ell}}}}}$ , ${{\mathit D}_{{0}}^{*-}}$ $\rightarrow$ ${{\overline{\mathit D}}^{0}}{{\mathit \pi}^{-}}$ $(3.0\pm{1.2})\times 10^{-3}$S=1.8 
$\Gamma_{10}$ ${{\mathit D}_{{2}}^{*}{(2460)}^{-}}{{\mathit \ell}^{+}}{{\mathit \nu}_{{{{\mathit \ell}}}}}$ , ${{\mathit D}_{{2}}^{*-}}$ $\rightarrow$ ${{\overline{\mathit D}}^{0}}{{\mathit \pi}^{-}}$ $(1.21\pm{0.33})\times 10^{-3}$S=1.8 2065
$\Gamma_{11}$ ${{\overline{\mathit D}}^{(*)}}$ n ${{\mathit \pi}}{{\mathit \ell}^{+}}{{\mathit \nu}_{{{{\mathit \ell}}}}}$ (n ${}\geq{}$ 1) $(2.3\pm{0.4})\%$
$\Gamma_{12}$ ${{\overline{\mathit D}}^{*0}}{{\mathit \pi}^{-}}{{\mathit \ell}^{+}}{{\mathit \nu}_{{{{\mathit \ell}}}}}$ $(4.9\pm{0.8})\times 10^{-3}$2256
$\Gamma_{13}$ ${{\mathit D}_{{1}}{(2420)}^{-}}{{\mathit \ell}^{+}}{{\mathit \nu}_{{{{\mathit \ell}}}}}$ , ${{\mathit D}_{{1}}^{-}}$ $\rightarrow$ ${{\overline{\mathit D}}^{*0}}{{\mathit \pi}^{-}}$ $(2.80\pm{0.28})\times 10^{-3}$
$\Gamma_{14}$ ${{\mathit D}_{{1}}^{\,'}{(2430)}^{-}}{{\mathit \ell}^{+}}{{\mathit \nu}_{{{{\mathit \ell}}}}}$ , ${{\mathit D}_{{1}}^{'-}}$ $\rightarrow$ ${{\overline{\mathit D}}^{*0}}{{\mathit \pi}^{-}}$ $(3.1\pm{0.9})\times 10^{-3}$
$\Gamma_{15}$ ${{\mathit D}_{{2}}^{*}{(2460)}^{-}}{{\mathit \ell}^{+}}{{\mathit \nu}_{{{{\mathit \ell}}}}}$ , ${{\mathit D}_{{2}}^{*-}}$ $\rightarrow$ ${{\overline{\mathit D}}^{*0}}{{\mathit \pi}^{-}}$ $(6.8\pm{1.2})\times 10^{-4}$2065
$\Gamma_{16}$ ${{\mathit D}^{-}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit \ell}^{+}}{{\mathit \nu}_{{{{\mathit \ell}}}}}$ $(1.3\pm{0.5})\times 10^{-3}$2299
$\Gamma_{17}$ ${{\mathit D}^{*-}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit \ell}^{+}}{{\mathit \nu}_{{{{\mathit \ell}}}}}$ $(1.4\pm{0.5})\times 10^{-3}$2247
$\Gamma_{18}$ ${{\mathit \rho}^{-}}{{\mathit \ell}^{+}}{{\mathit \nu}_{{{{\mathit \ell}}}}}$ [1]$(2.94\pm{0.21})\times 10^{-4}$2583
$\Gamma_{19}$ ${{\mathit \pi}^{-}}{{\mathit \ell}^{+}}{{\mathit \nu}_{{{{\mathit \ell}}}}}$ [1]$(1.50\pm{0.06})\times 10^{-4}$2638
$\Gamma_{20}$ ${{\mathit \pi}^{-}}{{\mathit \mu}^{+}}{{\mathit \nu}_{{\mu}}}$ 2637
$\Gamma_{21}$ ${{\mathit \pi}^{-}}{{\mathit \tau}^{+}}{{\mathit \nu}_{{\tau}}}$ $<2.5\times 10^{-4}$CL=90%2338
    constrained fit information