($\boldsymbol C$ = $+1$)
${{\mathit \Lambda}_{{c}}^{+}}$ = ${{\mathit u}}{{\mathit d}}{{\mathit c}}$ , ${{\mathit \Sigma}_{{c}}^{++}}$ = ${{\mathit u}}{{\mathit u}}{{\mathit c}}$ , ${{\mathit \Sigma}_{{c}}^{+}}$ = ${{\mathit u}}{{\mathit d}}{{\mathit c}}$ , ${{\mathit \Sigma}_{{c}}^{0}}$ = ${{\mathit d}}{{\mathit d}}{{\mathit c}}$ ,
${{\mathit \Xi}_{{c}}^{+}}$ = ${{\mathit u}}{{\mathit s}}{{\mathit c}}$ , ${{\mathit \Xi}_{{c}}^{0}}$ = ${{\mathit d}}{{\mathit s}}{{\mathit c}}$ , ${{\mathit \Omega}_{{c}}^{0}}$ = ${{\mathit s}}{{\mathit s}}{{\mathit c}}$
INSPIRE search

${{\boldsymbol \Xi}_{{c}}^{0}}$ $I(J^P)$ = $1/2(1/2^{+})$

According to the quark model, the ${{\mathit \Xi}_{{c}}^{0}}$ (quark content ${\mathit {\mathit d}}{\mathit {\mathit s}}{\mathit {\mathit c}}$) and ${{\mathit \Xi}_{{c}}^{+}}$ form an isospin doublet, and the spin-parity ought to be $\mathit J{}^{P} = 1/2{}^{+}$. None of $\mathit I$, $\mathit J$, or ${}^{P}$ has actually been measured.
${{\mathit \Xi}_{{c}}^{0}}$ MASS   $2470.87 {}^{+0.28}_{-0.31}$ MeV 
${{\mathit \Xi}_{{c}}^{0}}–{{\mathit \Xi}_{{c}}^{+}}$ MASS DIFFERENCE   $3.00 \pm0.24$ MeV 
${{\mathit \Xi}_{{c}}^{0}}$ MEAN LIFE   $(1.12 {}^{+0.13}_{-0.10}) \times 10^{-13}$ s 
${{\boldsymbol \Xi}_{{c}}^{0}}$ DECAY PARAMETERS
$\alpha $ FOR ${{\mathit \Xi}_{{c}}^{0}}$ $\rightarrow$ ${{\mathit \Xi}^{-}}{{\mathit \pi}^{+}}$   $-0.6 \pm0.4$  
Branching fractions marked with a footnote, e.g. [$\mathit a$], have been corrected for decay modes not observed in the experiments. For example, the submode fraction ${{\mathit \Xi}_{{c}}^{0}}$ $\rightarrow$ ${{\mathit p}}{{\mathit K}^{-}}{{\overline{\mathit K}}^{*}{(892)}^{0}}$ seen in ${{\mathit \Xi}_{{c}}^{0}}$ $\rightarrow$ ${{\mathit p}}{{\mathit K}^{-}}{{\mathit K}^{-}}{{\mathit \pi}^{+}}$ has been multiplied up to include ${{\overline{\mathit K}}^{*}{(892)}^{0}}$ $\rightarrow$ ${{\overline{\mathit K}}^{0}}{{\mathit \pi}^{0}}$ decays.