($\boldsymbol B$ = $-1$)
${{\mathit \Lambda}_{{b}}^{0}}$ = ${{\mathit u}}{{\mathit d}}{{\mathit b}}$ , ${{\mathit \Xi}_{{b}}^{0}}$ = ${{\mathit u}}{{\mathit s}}{{\mathit b}}$ , ${{\mathit \Xi}_{{b}}^{-}}$ = ${{\mathit d}}{{\mathit s}}{{\mathit b}}$ , ${{\mathit \Omega}_{{b}}^{-}}$ = ${{\mathit s}}{{\mathit s}}{{\mathit b}}$
INSPIRE search

${{\boldsymbol b}}$-baryon ADMIXTURE (${{\boldsymbol \Lambda}_{{b}}}$, ${{\boldsymbol \Xi}_{{b}}}$, ${{\boldsymbol \Sigma}_{{b}}}$, ${{\boldsymbol \Omega}_{{b}}}$)

${{\mathit b}}$-baryon ADMIXTURE MEAN LIFE
These branching fractions are actually an average over weakly decaying ${{\mathit b}}$-baryons weighted by their production rates at the LHC, LEP, and Tevatron, branching ratios, and detection efficiencies. They scale with the ${{\mathit b}}$-baryon production fraction B( ${{\mathit b}}$ $\rightarrow$ ${{\mathit b}}$ -baryon).
The branching fractions B( ${{\mathit b}}$ -baryon $\rightarrow$ ${{\mathit \Lambda}}{{\mathit \ell}^{-}}{{\overline{\mathit \nu}}_{{{{\mathit \ell}}}}}$ anything) and B( ${{\mathit \Lambda}_{{b}}^{0}}$ $\rightarrow$ ${{\mathit \Lambda}_{{c}}^{+}}{{\mathit \ell}^{-}}{{\overline{\mathit \nu}}_{{{{\mathit \ell}}}}}$ anything) are not pure measurements because the underlying measured products of these with B( ${{\mathit b}}$ $\rightarrow$ ${{\mathit b}}$ -baryon) were used to determine B( ${{\mathit b}}$ $\rightarrow$ ${{\mathit b}}$ -baryon), as described in the note ``Production and Decay of ${{\mathit b}}$-Flavored Hadrons.''
For inclusive branching fractions, $\mathit e.g.,$ ${{\mathit B}}$ $\rightarrow$ ${{\mathit D}^{\pm}}$ anything, the values usually are multiplicities, not branching fractions. They can be greater than one.
$\Gamma_{1}$ ${{\mathit p}}{{\mathit \mu}^{-}}{{\overline{\mathit \nu}}}$ anything $(5.5^{+2.2}_{-1.9})\%$
$\Gamma_{2}$ ${{\mathit p}}{{\mathit \ell}}{{\overline{\mathit \nu}}_{{{{\mathit \ell}}}}}$ anything $(5.3\pm{1.1})\%$
$\Gamma_{3}$ ${{\mathit p}}$ anything $(66\pm{21})\%$
$\Gamma_{4}$ ${{\mathit \Lambda}}{{\mathit \ell}^{-}}{{\overline{\mathit \nu}}_{{{{\mathit \ell}}}}}$ anything $(3.6\pm{0.6})\%$
$\Gamma_{5}$ ${{\mathit \Lambda}}{{\mathit \ell}^{+}}{{\mathit \nu}_{{{{\mathit \ell}}}}}$ anything $(3.0\pm{0.8})\%$
$\Gamma_{6}$ ${{\mathit \Lambda}}$ anything $(37\pm{7})\%$
$\Gamma_{7}$ ${{\mathit \Xi}^{-}}{{\mathit \ell}^{-}}{{\overline{\mathit \nu}}_{{{{\mathit \ell}}}}}$ anything $(6.2\pm{1.6})\times 10^{-3}$