($\mathit B$ = $-1$)

${{\mathit \Lambda}_{{b}}^{0}}$ = ${{\mathit u}}{{\mathit d}}{{\mathit b}}$ , ${{\mathit \Xi}_{{b}}^{0}}$ = ${{\mathit u}}{{\mathit s}}{{\mathit b}}$ , ${{\mathit \Xi}_{{b}}^{-}}$ = ${{\mathit d}}{{\mathit s}}{{\mathit b}}$ , ${{\mathit \Omega}_{{b}}^{-}}$ = ${{\mathit s}}{{\mathit s}}{{\mathit b}}$
INSPIRE search

${{\mathit \Omega}_{{b}}^{-}}$ $I(J^P)$ = $0(1/2^{+})$

In the quark model ${{\mathit \Omega}_{{b}}^{-}}$ is $\mathit ssb$ ground state. None of its quantum numbers has been measured.
${{\mathit \Omega}_{{b}}^{-}}$ MASS   $6046.1 \pm1.7$ MeV 
${\mathit m}_{{{\mathit \Omega}_{{b}}^{-}}}–{\mathit m}_{{{\mathit \Lambda}_{{b}}^{0}}}$   $426.4 \pm2.2$ MeV 
${\mathit m}_{{{\mathit \Omega}_{{b}}^{-}}}–{\mathit m}_{{{\mathit \Xi}_{{b}}^{-}}}$   $247.3 \pm3.2$ MeV 
${{\mathit \Omega}_{{b}}}$ MEAN LIFE   $(1.64 {}^{+0.18}_{-0.17}) \times 10^{-12}$ s 
$\tau ({{\mathit \Omega}_{{b}}^{-}})/\tau ({{\mathit \Xi}_{{b}}^{-}}$) mean life ratio   $1.11 \pm0.16$  
$\Gamma_{1}$ ${{\mathit J / \psi}}{{\mathit \Omega}^{-}}$ ${\times }$B( ${{\mathit b}}$ $\rightarrow$ ${{\mathit \Omega}_{{b}}}$ ) $(2.9^{+1.1}_{-0.8})\times 10^{-6}$1806
$\Gamma_{2}$ ${{\mathit p}}{{\mathit K}^{-}}{{\mathit K}^{-}}$ ${\times }$B( ${{\overline{\mathit b}}}$ $\rightarrow$ ${{\mathit \Omega}_{{b}}}$ ) $<2.5\times 10^{-9}$CL=90%2866
$\Gamma_{3}$ ${{\mathit p}}{{\mathit \pi}^{-}}{{\mathit \pi}^{-}}$ ${\times }$B( ${{\overline{\mathit b}}}$ $\rightarrow$ ${{\mathit \Omega}_{{b}}}$ ) $<1.5\times 10^{-8}$CL=90%2943
$\Gamma_{4}$ ${{\mathit p}}{{\mathit K}^{-}}{{\mathit \pi}^{-}}$ ${\times }$B( ${{\overline{\mathit b}}}$ $\rightarrow$ ${{\mathit \Omega}_{{b}}}$ ) $<7\times 10^{-9}$CL=90%2915