${{\boldsymbol N}}$ BARYONS
($\boldsymbol S$ = 0, $\boldsymbol I$ = 1/2)
${{\mathit p}}$, ${{\mathit N}^{+}}$ = ${\mathit {\mathit u}}$ ${\mathit {\mathit u}}$ ${\mathit {\mathit d}}$; ${{\mathit n}}$, ${{\mathit N}^{0}}$ = ${\mathit {\mathit u}}$ ${\mathit {\mathit d}}$ ${\mathit {\mathit d}}$
INSPIRE search

${{\boldsymbol N}{(2120)}}$ $I(J^P)$ = $1/2(3/2^{-})$

Before the 2012 $\mathit Review$, all the evidence for a $\mathit J{}^{P} = 3/2{}^{-}$ state with a mass above 1800 MeV was filed under a two-star ${{\mathit N}{(2080)}}$. There is now evidence from ANISOVICH 2012A for two ${}^{}3/2{}^{-}$ states in this region, so we have split the older data (according to mass) between a three-star ${{\mathit N}{(1875)}}$ and a two-star ${{\mathit N}{(2120)}}$.
${{\boldsymbol N}{(2120)}}$ POLE POSITION
REAL PART   $2050\text{ to }2150\text{ }(\approx2100) $ MeV 
$-2{\times }$IMAGINARY PART   $200\text{ to }360\text{ }(\approx280) $ MeV 
${{\boldsymbol N}{(2120)}}$ ELASTIC POLE RESIDUE
MODULUS $\vert \mathit r\vert $   $10\text{ to }30\text{ }(\approx20) $ MeV 
PHASE $\theta $   $-40\text{ to }20\text{ }(\approx-10) $ $^\circ{}$ 
${{\boldsymbol N}{(2120)}}$ INELASTIC POLE RESIDUE
Normalized residue in ${{\mathit N}}$ ${{\mathit \pi}}$ $\rightarrow$ ${{\mathit N}{(2120)}}$ $\rightarrow$ ${{\mathit \Lambda}}{{\mathit K}}$
Normalized residue in ${{\mathit N}}$ ${{\mathit \pi}}$ $\rightarrow$ ${{\mathit N}{(2120)}}$ $\rightarrow$ ${{\mathit \Sigma}}{{\mathit K}}$
Normalized residue in ${{\mathit N}}$ ${{\mathit \pi}}$ $\rightarrow$ ${{\mathit N}{(2120)}}$ $\rightarrow$ ${{\mathit N}{(1535)}}{{\mathit \pi}}$
Normalized residue in ${{\mathit N}}$ ${{\mathit \pi}}$ $\rightarrow$ ${{\mathit N}{(2120)}}$ $\rightarrow$ ${{\mathit \Delta}{(1232)}}{{\mathit \pi}}$ , ${\mathit S}{\mathrm -wave}$
Normalized residue in ${{\mathit N}}$ ${{\mathit \pi}}$ $\rightarrow$ ${{\mathit N}{(2120)}}$ $\rightarrow$ ${{\mathit \Delta}{(1232)}}{{\mathit \pi}}$ , ${\mathit D}{\mathrm -wave}$
Normalized residue in ${{\mathit N}}$ ${{\mathit \pi}}$ $\rightarrow$ ${{\mathit N}{(2120)}}$ $\rightarrow$ ${{\mathit N}}{{\mathit \sigma}}$
${{\mathit N}{(2120)}}$ BREIT-WIGNER MASS   $2060\text{ to }2160\text{ }(\approx2120) $ MeV 
${{\mathit N}{(2120)}}$ BREIT-WIGNER WIDTH   $260\text{ to }360\text{ }(\approx300) $ MeV 
${{\boldsymbol N}{(2120)}}$ PHOTON DECAY AMPLITUDES AT THE POLE
${{\mathit N}{(2120)}}$ $\rightarrow$ ${{\mathit p}}{{\mathit \gamma}}$ , helicity-1/2 amplitude A$_{1/2}$
${{\mathit N}{(2120)}}$ $\rightarrow$ ${{\mathit p}}{{\mathit \gamma}}$ , helicity-3/2 amplitude A$_{3/2}$
${{\boldsymbol N}{(2120)}}$ BREIT-WIGNER PHOTON DECAY AMPLITUDES
${{\mathit N}{(2120)}}$ $\rightarrow$ ${{\mathit p}}{{\mathit \gamma}}$ , helicity-1/2 amplitude A$_{1/2}$
${{\mathit N}{(2120)}}$ $\rightarrow$ ${{\mathit p}}{{\mathit \gamma}}$ , helicity-3/2 amplitude A$_{3/2}$
${{\mathit N}{(2120)}}$ $\rightarrow$ ${{\mathit n}}{{\mathit \gamma}}$ , helicity-1/2 amplitude A$_{1/2}$
${{\mathit N}{(2120)}}$ $\rightarrow$ ${{\mathit n}}{{\mathit \gamma}}$ , helicity-3/2 amplitude A$_{3/2}$
$\Gamma_{1}$ ${{\mathit N}}{{\mathit \pi}}$ $5 - 15\%$846
$\Gamma_{2}$ ${{\mathit N}}{{\mathit \eta}^{\,'}}$ $2 - 6\%$474
$\Gamma_{3}$ ${{\mathit N}}{{\mathit \omega}}$ $4 - 20\%$617
$\Gamma_{4}$ ${{\mathit N}}{{\mathit \pi}}{{\mathit \pi}}$ $50 - 95\%$827
$\Gamma_{5}$ ${{\mathit \Delta}{(1232)}}{{\mathit \pi}}$ $40 - 90\%$693
$\Gamma_{6}$ ${{\mathit \Delta}{(1232)}}{{\mathit \pi}}$ , ${\mathit S}{\mathrm -wave}$ $30 - 70\%$693
$\Gamma_{7}$ ${{\mathit \Delta}{(1232)}}{{\mathit \pi}}$ , ${\mathit D}{\mathrm -wave}$ $8 - 32\%$693
$\Gamma_{8}$ ${{\mathit \Lambda}}{{\mathit K}^{*}{(892)}}$ $<$ 0.2$\%$339
$\Gamma_{9}$ ${{\mathit N}}{{\mathit \sigma}}$ $7 - 15\%$
$\Gamma_{10}$ ${{\mathit N}{(1535)}}{{\mathit \pi}}$ $7 - 23\%$494
$\Gamma_{11}$ ${{\mathit p}}{{\mathit \gamma}}$ $0.16 - 2.1\%$852
$\Gamma_{12}$ ${{\mathit p}}{{\mathit \gamma}}$ , helicity=1/2 $0.07 - 0.80\%$852
$\Gamma_{13}$ ${{\mathit p}}{{\mathit \gamma}}$ , helicity=3/2 $0.09 - 1.3\%$852
$\Gamma_{14}$ ${{\mathit n}}{{\mathit \gamma}}$ $0.04 - 0.72\%$852
$\Gamma_{15}$ ${{\mathit n}}{{\mathit \gamma}}$ , helicity=1/2 $0.04 - 0.60\%$852
$\Gamma_{16}$ ${{\mathit n}}{{\mathit \gamma}}$ , helicity=3/2 $0.001 - 0.12\%$852