($\boldsymbol C$ = $+1$)
${{\mathit \Lambda}_{{c}}^{+}}$ = ${{\mathit u}}{{\mathit d}}{{\mathit c}}$ , ${{\mathit \Sigma}_{{c}}^{++}}$ = ${{\mathit u}}{{\mathit u}}{{\mathit c}}$ , ${{\mathit \Sigma}_{{c}}^{+}}$ = ${{\mathit u}}{{\mathit d}}{{\mathit c}}$ , ${{\mathit \Sigma}_{{c}}^{0}}$ = ${{\mathit d}}{{\mathit d}}{{\mathit c}}$ ,
${{\mathit \Xi}_{{c}}^{+}}$ = ${{\mathit u}}{{\mathit s}}{{\mathit c}}$ , ${{\mathit \Xi}_{{c}}^{0}}$ = ${{\mathit d}}{{\mathit s}}{{\mathit c}}$ , ${{\mathit \Omega}_{{c}}^{0}}$ = ${{\mathit s}}{{\mathit s}}{{\mathit c}}$
INSPIRE search

${{\boldsymbol \Lambda}_{{c}}{(2625)}^{+}}$ $I(J^P)$ = $0(3/2^{-})$

The spin-parity has not been measured but is expected to be ${}^{}3/2{}^{-}$: this is presumably the charm counterpart of the strange ${{\mathit \Lambda}{(1520)}}$.
${{\mathit \Lambda}_{{c}}{(2625)}^{+}}$ MASS   $2628.11 \pm0.19$ MeV (S = 1.1)
${{\mathit \Lambda}_{{c}}{(2625)}^{+}}–{{\mathit \Lambda}_{{c}}^{+}}$ MASS DIFFERENCE   $341.65 \pm0.13$ MeV (S = 1.1)
${{\mathit \Lambda}_{{c}}{(2625)}^{+}}$ WIDTH   $<0.97$ MeV  CL=90.0%
${{\mathit \Lambda}_{{c}}^{+}}{{\mathit \pi}}{{\mathit \pi}}$ and its submode ${{\mathit \Sigma}{(2455)}}{{\mathit \pi}}$ are the only strong decays allowed to an excited ${{\mathit \Lambda}_{{c}}^{+}}$ having this mass.
$\Gamma_{1}$ ${{\mathit \Lambda}_{{c}}^{+}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ $\approx{}67\%$184
$\Gamma_{2}$ ${{\mathit \Sigma}_{{c}}{(2455)}^{++}}{{\mathit \pi}^{-}}$ $<5$102
$\Gamma_{3}$ ${{\mathit \Sigma}_{{c}}{(2455)}^{0}}{{\mathit \pi}^{+}}$ $<5$102
$\Gamma_{4}$ ${{\mathit \Lambda}_{{c}}^{+}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ 3-body $large$184
$\Gamma_{5}$ ${{\mathit \Lambda}_{{c}}^{+}}{{\mathit \pi}^{0}}$ [1]not seen293
$\Gamma_{6}$ ${{\mathit \Lambda}_{{c}}^{+}}{{\mathit \gamma}}$ not seen319