CHARMED BARYONS
($\boldsymbol C$ = $+1$)
${{\mathit \Lambda}_{{c}}^{+}}$ = ${{\mathit u}}{{\mathit d}}{{\mathit c}}$ , ${{\mathit \Sigma}_{{c}}^{++}}$ = ${{\mathit u}}{{\mathit u}}{{\mathit c}}$ , ${{\mathit \Sigma}_{{c}}^{+}}$ = ${{\mathit u}}{{\mathit d}}{{\mathit c}}$ , ${{\mathit \Sigma}_{{c}}^{0}}$ = ${{\mathit d}}{{\mathit d}}{{\mathit c}}$ ,
${{\mathit \Xi}_{{c}}^{+}}$ = ${{\mathit u}}{{\mathit s}}{{\mathit c}}$ , ${{\mathit \Xi}_{{c}}^{0}}$ = ${{\mathit d}}{{\mathit s}}{{\mathit c}}$ , ${{\mathit \Omega}_{{c}}^{0}}$ = ${{\mathit s}}{{\mathit s}}{{\mathit c}}$
INSPIRE search

${{\boldsymbol \Sigma}_{{c}}{(2520)}}$ $I(J^P)$ = $1(3/2^{+})$

Seen in the ${{\mathit \Lambda}_{{c}}^{+}}{{\mathit \pi}^{\pm}}$ mass spectrum. The natural assignment is that this is the $\mathit J{}^{P} = 3/2{}^{+}$ excitation of the ${{\mathit \Sigma}_{{c}}{(2455)}}$, the charm counterpart of the ${{\mathit \Sigma}{(1385)}}$, but neither $\mathit J$ nor ${}^{P}$ has been measured.
${{\boldsymbol \Sigma}_{{c}}{(2520)}}$ MASSES
${{\mathit \Sigma}_{{c}}{(2520)}^{++}}$ MASS   $2518.41 {}^{+0.21}_{-0.19}$ MeV (S = 1.1)
${{\mathit \Sigma}_{{c}}{(2520)}^{+}}$ MASS   $2517.5 \pm2.3$ MeV 
${{\mathit \Sigma}_{{c}}{(2520)}^{0}}$ MASS   $2518.48 \pm0.20$ MeV (S = 1.1)
${{\boldsymbol \Sigma}_{{c}}{(2520)}}$ MASS DIFFERENCES
${\mathit m}_{{{\mathit \Sigma}_{{c}}{(2520)}^{++}}}–{\mathit m}_{{{\mathit \Lambda}_{{c}}^{+}}}$   $231.95 {}^{+0.17}_{-0.12}$ MeV (S = 1.3)
${\mathit m}_{{{\mathit \Sigma}_{{c}}{(2520)}^{+}}}–{\mathit m}_{{{\mathit \Lambda}_{{c}}^{+}}}$   $231.0 \pm2.3$ MeV 
${\mathit m}_{{{\mathit \Sigma}_{{c}}{(2520)}^{0}}}–{\mathit m}_{{{\mathit \Lambda}_{{c}}^{+}}}$   $232.02 {}^{+0.15}_{-0.14}$ MeV (S = 1.3)
${\mathit m}_{{{\mathit \Sigma}_{{c}}{(2520)}^{++}}}–{\mathit m}_{{{\mathit \Sigma}_{{c}}{(2520)}^{0}}}$   $0.01 \pm0.15$ MeV 
${{\boldsymbol \Sigma}_{{c}}{(2520)}}$ WIDTHS
${{\mathit \Sigma}_{{c}}{(2520)}^{++}}$ WIDTH   $14.78 {}^{+0.30}_{-0.40}$ MeV 
${{\mathit \Sigma}_{{c}}{(2520)}^{+}}$ WIDTH   $<17$ MeV  CL=90.0%
${{\mathit \Sigma}_{{c}}{(2520)}^{0}}$ WIDTH   $15.3 {}^{+0.4}_{-0.5}$ MeV 
${{\mathit \Lambda}_{{c}}^{+}}{{\mathit \pi}}$ is the only strong decay allowed to a ${{\mathit \Sigma}_{{c}}}$ having this mass.
$\Gamma_{1}$ ${{\mathit \Lambda}_{{c}}^{+}}{{\mathit \pi}}$ $\approx{}100\%$179