CHARMED BARYONS
($\boldsymbol C$ = $+1$)
${{\mathit \Lambda}_{{c}}^{+}}$ = ${{\mathit u}}{{\mathit d}}{{\mathit c}}$ , ${{\mathit \Sigma}_{{c}}^{++}}$ = ${{\mathit u}}{{\mathit u}}{{\mathit c}}$ , ${{\mathit \Sigma}_{{c}}^{+}}$ = ${{\mathit u}}{{\mathit d}}{{\mathit c}}$ , ${{\mathit \Sigma}_{{c}}^{0}}$ = ${{\mathit d}}{{\mathit d}}{{\mathit c}}$ ,
${{\mathit \Xi}_{{c}}^{+}}$ = ${{\mathit u}}{{\mathit s}}{{\mathit c}}$ , ${{\mathit \Xi}_{{c}}^{0}}$ = ${{\mathit d}}{{\mathit s}}{{\mathit c}}$ , ${{\mathit \Omega}_{{c}}^{0}}$ = ${{\mathit s}}{{\mathit s}}{{\mathit c}}$
INSPIRE search

${{\boldsymbol \Lambda}_{{c}}{(2940)}^{+}}$ $I(J^P)$ = $0(3/2^{-})$

A narrow peak seen in ${{\mathit p}}{{\mathit D}^{0}}$ and in ${{\mathit \Lambda}_{{c}}^{+}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ . It is not seen in ${{\mathit p}}{{\mathit D}^{+}}$ , and therefore it is a ${{\mathit \Lambda}_{{c}}^{+}}$ and not a ${{\mathit \Sigma}_{{c}}}$. $\mathit J{}^{P} = 3/2-$ is favored, but not certain.
${{\mathit \Lambda}_{{c}}{(2940)}^{+}}$ MASS   $2939.6 {}^{+1.3}_{-1.5}$ MeV 
${{\mathit \Lambda}_{{c}}{(2940)}^{+}}$ WIDTH   $20 {}^{+6}_{-5}$ MeV 
$\Gamma_{1}$ ${{\mathit p}}{{\mathit D}^{0}}$ seen420
$\Gamma_{2}$ ${{\mathit \Sigma}_{{c}}{(2455)}^{0}}{}^{,++}$ ${{\mathit \pi}^{\pm}}$ seen