($\boldsymbol C$ = $+1$)
${{\mathit \Lambda}_{{c}}^{+}}$ = ${{\mathit u}}{{\mathit d}}{{\mathit c}}$ , ${{\mathit \Sigma}_{{c}}^{++}}$ = ${{\mathit u}}{{\mathit u}}{{\mathit c}}$ , ${{\mathit \Sigma}_{{c}}^{+}}$ = ${{\mathit u}}{{\mathit d}}{{\mathit c}}$ , ${{\mathit \Sigma}_{{c}}^{0}}$ = ${{\mathit d}}{{\mathit d}}{{\mathit c}}$ ,
${{\mathit \Xi}_{{c}}^{+}}$ = ${{\mathit u}}{{\mathit s}}{{\mathit c}}$ , ${{\mathit \Xi}_{{c}}^{0}}$ = ${{\mathit d}}{{\mathit s}}{{\mathit c}}$ , ${{\mathit \Omega}_{{c}}^{0}}$ = ${{\mathit s}}{{\mathit s}}{{\mathit c}}$
INSPIRE search

${{\boldsymbol \Xi}_{{c}}{(2645)}}$ $I(J^P)$ = $1/2(3/2^{+})$

The natural assignment is that this is the $\mathit J{}^{P} = 3/2{}^{+}$ excitation of the ${{\mathit \Xi}_{{c}}}$ in the same SU(4) multiplet as the ${{\mathit \Delta}{(1232)}}$, but the quantum numbers have not been measured.
${{\boldsymbol \Xi}_{{c}}{(2645)}}$ MASSES
${{\mathit \Xi}_{{c}}{(2645)}^{+}}$ MASS   $2645.53 \pm0.31$ MeV 
${{\mathit \Xi}_{{c}}{(2645)}^{0}}$ MASS   $2646.32 \pm0.31$ MeV (S = 1.1)
${{\boldsymbol \Xi}_{{c}}{(2645)}}–{{\boldsymbol \Xi}_{{c}}}$ MASS DIFFERENCES
${\mathit m}_{{{\mathit \Xi}_{{c}}{(2645)}^{+}}}–{\mathit m}_{{{\mathit \Xi}_{{c}}^{0}}}$   $174.66 \pm0.09$ MeV 
${\mathit m}_{{{\mathit \Xi}_{{c}}{(2645)}^{0}}}–{\mathit m}_{{{\mathit \Xi}_{{c}}^{+}}}$   $178.44 \pm0.11$ MeV (S = 1.1)
${{\mathit \Xi}_{{c}}{(2645)}^{+}}–{{\mathit \Xi}_{{c}}{(2645)}^{0}}$ MASS DIFFERENCE   $-0.79 \pm0.27$ MeV 
${{\boldsymbol \Xi}_{{c}}{(2645)}}$ WIDTHS
${{\mathit \Xi}_{{c}}{(2645)}^{+}}$ WIDTH   $2.14 \pm0.19$ MeV (S = 1.1)
${{\mathit \Xi}_{{c}}{(2645)}^{0}}$ WIDTH   $2.35 \pm0.22$ MeV 
${{\mathit \Xi}_{{c}}}{{\mathit \pi}}$ is the only strong decay allowed to a ${{\mathit \Xi}_{{c}}}$ resonance having this mass.
$\Gamma_{1}$ ${{\mathit \Xi}_{{c0}}}{{\mathit \pi}^{+}}$ seen102
$\Gamma_{2}$ ${{\mathit \Xi}_{{c+}}}{{\mathit \pi}^{-}}$ seen106