${\boldsymbol {\boldsymbol b}}$ ${\boldsymbol {\overline{\boldsymbol b}}}$ MESONS
(including possibly non- ${\boldsymbol {\boldsymbol q}}$ ${\boldsymbol {\overline{\boldsymbol q}}}$ states)
INSPIRE search

${{\boldsymbol \chi}_{{b0}}{(1P)}}$ $I^G(J^{PC})$ = $0^+(0^{+ +})$ J need confirmation.

Observed in radiative decay of the ${{\mathit \Upsilon}{(2S)}}$, therefore ${}^{C} = +$. Branching ratio requires E1 transition, M1 is strongly disfavored, therefore ${}^{P} = +$.
${{\mathit \chi}_{{b0}}{(1P)}}$ MASS   $9859.44 \pm0.42 \pm0.31$ MeV 
${\mathit m}_{{{\mathit \chi}_{{b1}}{(1P)}}}–{\mathit m}_{{{\mathit \chi}_{{b0}}{(1P)}}}$   $32.5 \pm0.9$ MeV 
${{\mathit \gamma}}$ ENERGY IN ${{\mathit \Upsilon}{(2S)}}$ DECAY   $162.5 \pm0.4$ MeV 
B( ${{\mathit \chi}_{{b0}}{(1P)}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \Upsilon}{(1S)}}$ ) ${\times }$ B( ${{\mathit \Upsilon}{(2S)}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \chi}_{{b0}}{(1P)}}$ ) ${\times }$ B( ${{\mathit \Upsilon}{(1S)}}$ $\rightarrow$ ${{\mathit \ell}^{+}}{{\mathit \ell}^{-}}$ )   $(1.67 \pm0.28) \times 10^{-5}$  
[B( ${{\mathit \chi}_{{b0}}{(1P)}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \Upsilon}{(1S)}}$ ) ${\times }$ B( ${{\mathit \Upsilon}{(2S)}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \chi}_{{b0}}{(1P)}}$ )] $/$ [B( ${{\mathit \chi}_{{b1}}{(1P)}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \Upsilon}{(1S)}}$ ) ${\times }$ B( ${{\mathit \Upsilon}{(2S)}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \chi}_{{b1}}{(1P)}}$ )]   $0.033 \pm0.004$  
$\Gamma_{1}$ ${{\mathit \gamma}}{{\mathit \Upsilon}{(1S)}}$ $(1.94\pm{0.27})\%$391
$\Gamma_{2}$ ${{\mathit D}^{0}}{{\mathit X}}$ $<10.4\%$CL=90%
$\Gamma_{3}$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit K}^{+}}{{\mathit K}^{-}}{{\mathit \pi}^{0}}$ $<1.6\times 10^{-4}$CL=90%4875
$\Gamma_{4}$ 2 ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit K}^{-}}{{\mathit K}_S^0}$ $<5\times 10^{-5}$CL=90%4875
$\Gamma_{5}$ 2 ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit K}^{-}}{{\mathit K}_S^0}$ 2 ${{\mathit \pi}^{0}}$ $<5\times 10^{-4}$CL=90%4846
$\Gamma_{6}$ 2 ${{\mathit \pi}^{+}}$2 ${{\mathit \pi}^{-}}$2 ${{\mathit \pi}^{0}}$ $<2.1\times 10^{-4}$CL=90%4905
$\Gamma_{7}$ 2 ${{\mathit \pi}^{+}}$2 ${{\mathit \pi}^{-}}{{\mathit K}^{+}}{{\mathit K}^{-}}$ $(1.1\pm{0.6})\times 10^{-4}$4861
$\Gamma_{8}$ 2 ${{\mathit \pi}^{+}}$2 ${{\mathit \pi}^{-}}{{\mathit K}^{+}}{{\mathit K}^{-}}{{\mathit \pi}^{0}}$ $<2.7\times 10^{-4}$CL=90%4846
$\Gamma_{9}$ 2 ${{\mathit \pi}^{+}}$2 ${{\mathit \pi}^{-}}{{\mathit K}^{+}}{{\mathit K}^{-}}$2 ${{\mathit \pi}^{0}}$ $<5\times 10^{-4}$CL=90%4828
$\Gamma_{10}$ 3 ${{\mathit \pi}^{+}}$2 ${{\mathit \pi}^{-}}{{\mathit K}^{-}}{{\mathit K}_S^0}$ ${{\mathit \pi}^{0}}$ $<1.6\times 10^{-4}$CL=90%4827
$\Gamma_{11}$ 3 ${{\mathit \pi}^{+}}$3 ${{\mathit \pi}^{-}}$ $<8\times 10^{-5}$CL=90%4904
$\Gamma_{12}$ 3 ${{\mathit \pi}^{+}}$3 ${{\mathit \pi}^{-}}$2 ${{\mathit \pi}^{0}}$ $<6\times 10^{-4}$CL=90%4881
$\Gamma_{13}$ 3 ${{\mathit \pi}^{+}}$3 ${{\mathit \pi}^{-}}{{\mathit K}^{+}}{{\mathit K}^{-}}$ $(2.4\pm{1.2})\times 10^{-4}$4827
$\Gamma_{14}$ 3 ${{\mathit \pi}^{+}}$3 ${{\mathit \pi}^{-}}{{\mathit K}^{+}}{{\mathit K}^{-}}{{\mathit \pi}^{0}}$ $<1.0\times 10^{-3}$CL=90%4808
$\Gamma_{15}$ 4 ${{\mathit \pi}^{+}}$4 ${{\mathit \pi}^{-}}$ $<8\times 10^{-5}$CL=90%4880
$\Gamma_{16}$ 4 ${{\mathit \pi}^{+}}$4 ${{\mathit \pi}^{-}}$2 ${{\mathit \pi}^{0}}$ $<2.1\times 10^{-3}$CL=90%4850
$\Gamma_{17}$ ${{\mathit J / \psi}}{{\mathit J / \psi}}$ $<7\times 10^{-5}$CL=90%3836
$\Gamma_{18}$ ${{\mathit J / \psi}}{{\mathit \psi}{(2S)}}$ $<1.2\times 10^{-4}$CL=90%3571
$\Gamma_{19}$ ${{\mathit \psi}{(2S)}}{{\mathit \psi}{(2S)}}$ $<3.1\times 10^{-5}$CL=90%3273
$\Gamma_{20}$ ${{\mathit J / \psi}{(1S)}}$ anything $<2.3\times 10^{-3}$CL=90%