CHARMED BARYONS
($\boldsymbol C$ = $+1$)
${{\mathit \Lambda}_{{c}}^{+}}$ = ${{\mathit u}}{{\mathit d}}{{\mathit c}}$ , ${{\mathit \Sigma}_{{c}}^{++}}$ = ${{\mathit u}}{{\mathit u}}{{\mathit c}}$ , ${{\mathit \Sigma}_{{c}}^{+}}$ = ${{\mathit u}}{{\mathit d}}{{\mathit c}}$ , ${{\mathit \Sigma}_{{c}}^{0}}$ = ${{\mathit d}}{{\mathit d}}{{\mathit c}}$ ,
${{\mathit \Xi}_{{c}}^{+}}$ = ${{\mathit u}}{{\mathit s}}{{\mathit c}}$ , ${{\mathit \Xi}_{{c}}^{0}}$ = ${{\mathit d}}{{\mathit s}}{{\mathit c}}$ , ${{\mathit \Omega}_{{c}}^{0}}$ = ${{\mathit s}}{{\mathit s}}{{\mathit c}}$
INSPIRE search

${{\boldsymbol \Omega}_{{c}}^{0}}$ $I(J^P)$ = $0(1/2^{+})$

The quantum numbers have not been measured, but are simply assigned in accord with the quark model, in which the ${{\mathit \Omega}_{{c}}^{0}}$ is the ${\mathit {\mathit s}}$ ${\mathit {\mathit s}}$ ${\mathit {\mathit c}}$ ground state.
${{\mathit \Omega}_{{c}}^{0}}$ MASS   $2695.2 \pm1.7$ MeV (S = 1.3)
${{\mathit \Omega}_{{c}}^{0}}$ MEAN LIFE   $(6.9 \pm1.2) \times 10^{-14}$ s 
$\Gamma_{6}$ ${{\mathit \Xi}^{0}}{{\overline{\mathit K}}^{0}}$ $1.64\pm{0.29}$950
$\Gamma_{7}$ ${{\mathit \Xi}^{0}}{{\mathit K}^{-}}{{\mathit \pi}^{+}}$ $1.20\pm{0.18}$901
$\Gamma_{8}$ ${{\mathit \Xi}^{0}}{{\overline{\mathit K}}^{*0}}$ , ${{\overline{\mathit K}}^{*0}}$ $\rightarrow$ ${{\mathit K}^{-}}{{\mathit \pi}^{+}}$ $0.68\pm{0.16}$764
$\Gamma_{9}$ ${{\mathit \Xi}^{-}}{{\overline{\mathit K}}^{0}}{{\mathit \pi}^{+}}$ $2.12\pm{0.28}$895
$\Gamma_{10}$ ${{\mathit \Xi}^{-}}{{\mathit K}^{-}}$2 ${{\mathit \pi}^{+}}$ $0.63\pm{0.09}$830
$\Gamma_{11}$ ${{\mathit \Xi}{(1530)}^{0}}{{\mathit K}^{-}}{{\mathit \pi}^{+}}$ , ${{\mathit \Xi}^{*0}}$ $\rightarrow$ ${{\mathit \Xi}^{-}}{{\mathit \pi}^{+}}$ $0.21\pm{0.06}$757
$\Gamma_{12}$ ${{\mathit \Xi}^{-}}{{\overline{\mathit K}}^{*0}}{{\mathit \pi}^{+}}$ $0.34\pm{0.11}$653
$\Gamma_{13}$ ${{\mathit \Sigma}^{+}}{{\mathit K}^{-}}{{\mathit K}^{-}}{{\mathit \pi}^{+}}$ $<0.32$CL=90%689
$\Gamma_{14}$ ${{\mathit \Lambda}}{{\overline{\mathit K}}^{0}}{{\overline{\mathit K}}^{0}}$ $1.72\pm{0.35}$837