CHARMED BARYONS
($\boldsymbol C$ = $+1$)
${{\mathit \Lambda}_{{c}}^{+}}$ = ${{\mathit u}}{{\mathit d}}{{\mathit c}}$ , ${{\mathit \Sigma}_{{c}}^{++}}$ = ${{\mathit u}}{{\mathit u}}{{\mathit c}}$ , ${{\mathit \Sigma}_{{c}}^{+}}$ = ${{\mathit u}}{{\mathit d}}{{\mathit c}}$ , ${{\mathit \Sigma}_{{c}}^{0}}$ = ${{\mathit d}}{{\mathit d}}{{\mathit c}}$ ,
${{\mathit \Xi}_{{c}}^{+}}$ = ${{\mathit u}}{{\mathit s}}{{\mathit c}}$ , ${{\mathit \Xi}_{{c}}^{0}}$ = ${{\mathit d}}{{\mathit s}}{{\mathit c}}$ , ${{\mathit \Omega}_{{c}}^{0}}$ = ${{\mathit s}}{{\mathit s}}{{\mathit c}}$
INSPIRE search

${{\boldsymbol \Xi}_{{c}}^{'+}}$ $I(J^P)$ = $1/2(1/2^{+})$

The ${{\mathit \Xi}_{{c}}^{'+}}$ and ${{\mathit \Xi}_{{c}}^{'0}}$ presumably complete the SU(3) sextet whose other members are the ${{\mathit \Sigma}_{{c}}^{++}}$, ${{\mathit \Sigma}_{{c}}^{+}}$, ${{\mathit \Sigma}_{{c}}^{0}}$, and ${{\mathit \Omega}_{{c}}^{0}}$: see Fig.$~$3 in the note on Charmed Baryons. The quantum numbers given above come from this presumption but have not been measured.
${{\mathit \Xi}_{{c}}^{'+}}$ MASS   $2577.4 \pm1.2$ MeV (S = 2.9)
${{\mathit \Xi}_{{c}}^{'+}}–{{\mathit \Xi}_{{c}}^{+}}$ MASS DIFFERENCE   $109.5 \pm1.2$ MeV (S = 3.7)
${{\mathit \Xi}_{{c}}^{'+}}–{{\mathit \Xi}_{{c}}^{'0}}$ MASS DIFFERENCE   $-1.4 \pm1.3$ MeV (S = 2.5)
The ${{\mathit \Xi}_{{c}}^{'+}}-{{\mathit \Xi}_{{c}}^{+}}$ mass difference is too small for any strong decay to occur.
$\Gamma_{1}$ ${{\mathit \Xi}_{{c}}^{+}}{{\mathit \gamma}}$ seen107