BOTTOM, STRANGE MESONS
($\boldsymbol B$ = $\pm1$, $\boldsymbol S$ = $\mp{}$1)
${{\mathit B}_{{s}}^{0}}$ = ${\mathit {\mathit s}}$ ${\mathit {\overline{\mathit b}}}$, ${{\overline{\mathit B}}_{{s}}^{0}}$ = ${\mathit {\overline{\mathit s}}}$ ${\mathit {\mathit b}}$,
similarly for ${{\mathit B}_{{s}}^{*}}$'s
INSPIRE search

${{\boldsymbol B}_{{s}}^{0}}$ $I(J^P)$ = $0(0^{-})$ 

$\mathit I$, $\mathit J$, ${}^{P}$ need confirmation. Quantum numbers shown are quark-model predictions.
${{\mathit B}_{{s}}^{0}}$ MASS   $5366.88 \pm0.17$ MeV 
${\mathit m}_{{{\mathit B}_{{s}}^{0}}}–{\mathit m}_{{{\mathit B}^{}}}$   $87.40 \pm0.18$ MeV 
$\Gamma _{{{\mathit B}_{{s}}^{0}}}$   $(66.24 \pm0.18) \times 10^{10}$ s${}^{-1}$ 
$\Delta \Gamma _{{{\mathit B}_{{s}}^{0}}}/\Gamma _{{{\mathit B}_{{s}}^{0}}}$   $0.135 \pm0.008$  
${{\mathit B}_{{sH}}^{0}}$ MEAN LIFE   $(1.619 \pm0.009) \times 10^{-12}$ s 
${{\mathit B}_{{sL}}^{0}}$ MEAN LIFE   $(1.414 \pm0.006) \times 10^{-12}$ s 
${{\mathit B}_{{s}}^{0}}$ MEAN LIFE (Flavor specific)   $(1.527 \pm0.011) \times 10^{-12}$ s 
PRODUCTION ASYMMETRIES
A$_{P}({{\mathit B}_{{s}}^{0}}$)   $0.012 \pm0.016$  
These branching fractions all scale with B( ${{\overline{\mathit b}}}$ $\rightarrow$ ${{\mathit B}_{{s}}^{0}}$ ).
The branching fraction B( ${{\mathit B}_{{s}}^{0}}$ $\rightarrow$ ${{\mathit D}_{{s}}^{-}}{{\mathit \ell}^{+}}{{\mathit \nu}_{{{{\mathit \ell}}}}}$ anything) is not a pure measurement since the measured product branching fraction B( ${{\overline{\mathit b}}}$ $\rightarrow$ ${{\mathit B}_{{s}}^{0}}$ ) ${\times }$ B( ${{\mathit B}_{{s}}^{0}}$ $\rightarrow$ ${{\mathit D}_{{s}}^{-}}{{\mathit \ell}^{+}}{{\mathit \nu}_{{{{\mathit \ell}}}}}$ anything) was used to determine B( ${{\overline{\mathit b}}}$ $\rightarrow$ ${{\mathit B}_{{s}}^{0}}$ ), as described in the note on ``${{\mathit B}^{0}}-{{\overline{\mathit B}}^{0}}$ Mixing''
For inclusive branching fractions, $\mathit e.g.,$ ${{\mathit B}}$ $\rightarrow$ ${{\mathit D}^{\pm}}$ anything, the values usually are multiplicities, not branching fractions. They can be greater than one.
$\Gamma_{1}$ ${{\mathit D}_{{s}}^{-}}$ anything $(93\pm{25})\%$
$\Gamma_{2}$ ${{\mathit \ell}}{{\mathit \nu}_{{{{\mathit \ell}}}}}{{\mathit X}}$ $(9.6\pm{0.8})\%$
$\Gamma_{3}$ ${{\mathit e}^{+}}{{\mathit \nu}}{{\mathit X}^{-}}$ $(9.1\pm{0.8})\%$
$\Gamma_{4}$ ${{\mathit \mu}^{+}}{{\mathit \nu}}{{\mathit X}^{-}}$ $(10.2\pm{1.0})\%$
$\Gamma_{5}$ ${{\mathit D}_{{s}}^{-}}{{\mathit \ell}^{+}}{{\mathit \nu}_{{{{\mathit \ell}}}}}$ anything [1]$(8.1\pm{1.3})\%$
$\Gamma_{6}$ ${{\mathit D}_{{s}}^{*-}}{{\mathit \ell}^{+}}{{\mathit \nu}_{{{{\mathit \ell}}}}}$ anything $(5.4\pm{1.1})\%$
$\Gamma_{7}$ ${{\mathit D}_{{s1}}{(2536)}^{-}}{{\mathit \mu}^{+}}{{\mathit \nu}_{{\mu}}}$ , ${{\mathit D}_{{s1}}^{-}}$ $\rightarrow$ ${{\mathit D}^{*-}}{{\mathit K}_S^0}$ $(2.6\pm{0.7})\times 10^{-3}$
$\Gamma_{8}$ ${{\mathit D}_{{s1}}{(2536)}^{-}}{{\mathit X}}{{\mathit \mu}^{+}}{{\mathit \nu}}$ , ${{\mathit D}_{{s1}}^{-}}$ $\rightarrow$ ${{\overline{\mathit D}}^{0}}{{\mathit K}^{+}}$ $(4.4\pm{1.3})\times 10^{-3}$
$\Gamma_{9}$ ${{\mathit D}_{{s2}}{(2573)}^{-}}{{\mathit X}}{{\mathit \mu}^{+}}{{\mathit \nu}}$ , ${{\mathit D}_{{s2}}^{-}}$ $\rightarrow$ ${{\overline{\mathit D}}^{0}}{{\mathit K}^{+}}$ $(2.7\pm{1.0})\times 10^{-3}$
$\Gamma_{10}$ ${{\mathit D}_{{s}}^{-}}{{\mathit \pi}^{+}}$ $(3.00\pm{0.23})\times 10^{-3}$S=1.0 2320
$\Gamma_{11}$ ${{\mathit D}_{{s}}^{-}}{{\mathit \rho}^{+}}$ $(6.9\pm{1.4})\times 10^{-3}$2249
$\Gamma_{12}$ ${{\mathit D}_{{s}}^{-}}{{\mathit \pi}^{+}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ $(6.1\pm{1.0})\times 10^{-3}$S=1.0 2301
$\Gamma_{13}$ ${{\mathit D}_{{s1}}{(2536)}^{-}}{{\mathit \pi}^{+}}$ , ${{\mathit D}_{{s1}}^{-}}$ $\rightarrow$ ${{\mathit D}_{{s}}^{-}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ $(2.5\pm{0.8})\times 10^{-5}$
$\Gamma_{14}$ ${{\mathit D}_{{s}}^{\mp}}{{\mathit K}^{\pm}}$ $(2.27\pm{0.19})\times 10^{-4}$S=1.0 2293
$\Gamma_{15}$ ${{\mathit D}_{{s}}^{-}}{{\mathit K}^{+}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ $(3.2\pm{0.6})\times 10^{-4}$2249
$\Gamma_{16}$ ${{\mathit D}_{{s}}^{+}}{{\mathit D}_{{s}}^{-}}$ $(4.4\pm{0.5})\times 10^{-3}$1824
$\Gamma_{17}$ ${{\mathit D}_{{s}}^{-}}{{\mathit D}^{+}}$ $(2.8\pm{0.5})\times 10^{-4}$1875
$\Gamma_{18}$ ${{\mathit D}^{+}}{{\mathit D}^{-}}$ $(2.2\pm{0.6})\times 10^{-4}$1925
$\Gamma_{19}$ ${{\mathit D}^{0}}{{\overline{\mathit D}}^{0}}$ $(1.9\pm{0.5})\times 10^{-4}$1930
$\Gamma_{20}$ ${{\mathit D}_{{s}}^{*-}}{{\mathit \pi}^{+}}$ $(2.0\pm{0.5})\times 10^{-3}$2265
$\Gamma_{21}$ ${{\mathit D}_{{s}}^{*\mp}}{{\mathit K}^{\pm}}$ $(1.33\pm{0.35})\times 10^{-4}$
$\Gamma_{22}$ ${{\mathit D}_{{s}}^{*-}}{{\mathit \rho}^{+}}$ $(9.6\pm{2.1})\times 10^{-3}$2191
$\Gamma_{23}$ ${{\mathit D}_{{s}}^{*+}}{{\mathit D}_{{s}}^{-}}{+}$ ${{\mathit D}_{{s}}^{*-}}{{\mathit D}_{{s}}^{+}}$ $(1.37\pm{0.16})\%$1742
$\Gamma_{24}$ ${{\mathit D}_{{s}}^{*+}}{{\mathit D}_{{s}}^{*-}}$ $(1.44\pm{0.20})\%$S=1.1 1655
$\Gamma_{25}$ ${{\mathit D}_{{s}}^{(*)+}}{{\mathit D}_{{s}}^{(*)-}}$ $(4.5\pm{1.4})\%$
$\Gamma_{26}$ ${{\overline{\mathit D}}^{*0}}{{\overline{\mathit K}}^{0}}$ $(2.8\pm{1.1})\times 10^{-4}$2278
$\Gamma_{27}$ ${{\overline{\mathit D}}^{0}}{{\overline{\mathit K}}^{0}}$ $(4.3\pm{0.9})\times 10^{-4}$2330
$\Gamma_{28}$ ${{\overline{\mathit D}}^{0}}{{\mathit K}^{-}}{{\mathit \pi}^{+}}$ $(1.04\pm{0.13})\times 10^{-3}$2312
$\Gamma_{29}$ ${{\overline{\mathit D}}^{0}}{{\overline{\mathit K}}^{*}{(892)}^{0}}$ $(4.4\pm{0.6})\times 10^{-4}$2264
$\Gamma_{30}$ ${{\overline{\mathit D}}^{0}}{{\overline{\mathit K}}^{*}{(1410)}}$ $(3.9\pm{3.5})\times 10^{-4}$2117
$\Gamma_{31}$ ${{\overline{\mathit D}}^{0}}{{\overline{\mathit K}}_{{0}}^{*}{(1430)}}$ $(3.0\pm{0.7})\times 10^{-4}$2113
$\Gamma_{32}$ ${{\overline{\mathit D}}^{0}}{{\overline{\mathit K}}_{{2}}^{*}{(1430)}}$ $(1.1\pm{0.4})\times 10^{-4}$2113
$\Gamma_{33}$ ${{\overline{\mathit D}}^{0}}{{\overline{\mathit K}}^{*}{(1680)}}$ $<7.8\times 10^{-5}$CL=90%1997
$\Gamma_{34}$ ${{\overline{\mathit D}}^{0}}{{\overline{\mathit K}}_{{0}}^{*}{(1950)}}$ $<1.1\times 10^{-4}$CL=90%1890
$\Gamma_{35}$ ${{\overline{\mathit D}}^{0}}{{\overline{\mathit K}}_{{3}}^{*}{(1780)}}$ $<2.6\times 10^{-5}$CL=90%1971
$\Gamma_{36}$ ${{\overline{\mathit D}}^{0}}{{\overline{\mathit K}}_{{4}}^{*}{(2045)}}$ $<3.1\times 10^{-5}$CL=90%1837
$\Gamma_{37}$ ${{\overline{\mathit D}}^{0}}{{\mathit K}^{-}}{{\mathit \pi}^{+}}$ (non-resonant) $(2.1\pm{0.8})\times 10^{-4}$2312
$\Gamma_{38}$ ${{\mathit D}_{{s2}}^{*}{(2573)}^{-}}{{\mathit \pi}^{+}}$ , ${{\mathit D}_{{s2}}^{*}}$ $\rightarrow$ ${{\overline{\mathit D}}^{0}}{{\mathit K}^{-}}$ $(2.6\pm{0.4})\times 10^{-4}$
$\Gamma_{39}$ ${{\mathit D}_{{s1}}^{*}{(2700)}^{-}}{{\mathit \pi}^{+}}$ , ${{\mathit D}_{{s1}}^{*}}$ $\rightarrow$ ${{\overline{\mathit D}}^{0}}{{\mathit K}^{-}}$ $(1.6\pm{0.8})\times 10^{-5}$
$\Gamma_{40}$ ${{\mathit D}_{{s1}}^{*}{(2860)}^{-}}{{\mathit \pi}^{+}}$ , ${{\mathit D}_{{s1}}^{*}}$ $\rightarrow$ ${{\overline{\mathit D}}^{0}}{{\mathit K}^{-}}$ $(5\pm{4})\times 10^{-5}$
$\Gamma_{41}$ ${{\mathit D}_{{s3}}^{*}{(2860)}^{-}}{{\mathit \pi}^{+}}$ , ${{\mathit D}_{{s3}}^{*}}$ $\rightarrow$ ${{\overline{\mathit D}}^{0}}{{\mathit K}^{-}}$ $(2.2\pm{0.6})\times 10^{-5}$
$\Gamma_{42}$ ${{\overline{\mathit D}}^{0}}{{\mathit K}^{+}}{{\mathit K}^{-}}$ $(5.5\pm{0.8})\times 10^{-5}$2243
$\Gamma_{43}$ ${{\overline{\mathit D}}^{0}}{{\mathit f}_{{0}}{(980)}}$ $<3.1\times 10^{-6}$CL=90%2242
$\Gamma_{44}$ ${{\overline{\mathit D}}^{0}}{{\mathit \phi}}$ $(3.0\pm{0.5})\times 10^{-5}$2235
$\Gamma_{45}$ ${{\overline{\mathit D}}^{*0}}{{\mathit \phi}}$ $(3.7\pm{0.6})\times 10^{-5}$2178
$\Gamma_{46}$ ${{\mathit D}^{*\mp}}{{\mathit \pi}^{\pm}}$ $<6.1\times 10^{-6}$CL=90%
$\Gamma_{47}$ ${{\mathit \eta}_{{c}}}{{\mathit \phi}}$ $(5.0\pm{0.9})\times 10^{-4}$1663
$\Gamma_{48}$ ${{\mathit \eta}_{{c}}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ $(1.8\pm{0.7})\times 10^{-4}$1840
$\Gamma_{49}$ ${{\mathit J / \psi}{(1S)}}{{\mathit \phi}}$ $(1.08\pm{0.08})\times 10^{-3}$S=1.0 1588
$\Gamma_{50}$ ${{\mathit J / \psi}{(1S)}}{{\mathit \phi}}{{\mathit \phi}}$ $(1.24^{+0.17}_{-0.19})\times 10^{-5}$764
$\Gamma_{51}$ ${{\mathit J / \psi}{(1S)}}{{\mathit \pi}^{0}}$ $<1.2\times 10^{-3}$CL=90%1787
$\Gamma_{52}$ ${{\mathit J / \psi}{(1S)}}{{\mathit \eta}}$ $(4.0\pm{0.7})\times 10^{-4}$S=1.4 1733
$\Gamma_{53}$ ${{\mathit J / \psi}{(1S)}}{{\mathit K}_S^0}$ $(1.88\pm{0.15})\times 10^{-5}$1743
$\Gamma_{54}$ ${{\mathit J / \psi}{(1S)}}{{\overline{\mathit K}}^{*}{(892)}^{0}}$ $(4.1\pm{0.4})\times 10^{-5}$1637
$\Gamma_{55}$ ${{\mathit J / \psi}{(1S)}}{{\mathit \eta}^{\,'}}$ $(3.3\pm{0.4})\times 10^{-4}$1612
$\Gamma_{56}$ ${{\mathit J / \psi}{(1S)}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ $(2.09\pm{0.23})\times 10^{-4}$S=1.3 1775
$\Gamma_{57}$ ${{\mathit J / \psi}{(1S)}}{{\mathit f}_{{0}}{(500)}}$ , ${{\mathit f}_{{0}}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ $<4\times 10^{-6}$CL=90%
$\Gamma_{58}$ ${{\mathit J / \psi}{(1S)}}{{\mathit \rho}}$ , ${{\mathit \rho}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ $<4\times 10^{-6}$CL=90%
$\Gamma_{59}$ ${{\mathit J / \psi}{(1S)}}{{\mathit f}_{{0}}{(980)}}$ , ${{\mathit f}_{{0}}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ $(1.28\pm{0.18})\times 10^{-4}$S=1.7 
$\Gamma_{60}$ ${{\mathit J / \psi}{(1S)}}{{\mathit f}_{{2}}{(1270)}}$ , ${{\mathit f}_{{2}}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ $(1.1\pm{0.4})\times 10^{-6}$
$\Gamma_{61}$ ${{\mathit J / \psi}{(1S)}}{{\mathit f}_{{2}}{(1270)}}$ $_{0}$ , ${{\mathit f}_{{2}}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ $(7.5\pm{1.8})\times 10^{-7}$
$\Gamma_{62}$ ${{\mathit J / \psi}{(1S)}}{{\mathit f}_{{2}}{(1270)}}$ $_{\parallel}$ , ${{\mathit f}_{{2}}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ $(1.09\pm{0.34})\times 10^{-6}$
$\Gamma_{63}$ ${{\mathit J / \psi}{(1S)}}{{\mathit f}_{{2}}{(1270)}}$ $_{\perp}$ , ${{\mathit f}_{{2}}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ $(1.3\pm{0.8})\times 10^{-6}$
$\Gamma_{64}$ ${{\mathit J / \psi}{(1S)}}{{\mathit f}_{{0}}{(1370)}}$ , ${{\mathit f}_{{0}}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ $(4.5^{+0.7}_{-4.0})\times 10^{-5}$
$\Gamma_{65}$ ${{\mathit J / \psi}{(1S)}}{{\mathit f}_{{0}}{(1500)}}$ , ${{\mathit f}_{{0}}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ $(2.11^{+0.40}_{-0.29})\times 10^{-5}$
$\Gamma_{66}$ ${{\mathit J / \psi}{(1S)}}{{\mathit f}_{{2}}^{\,'}{(1525)}}$ $_{0}$ , ${{\mathit f}_{{2}}^{\,'}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ $(1.07\pm{0.24})\times 10^{-6}$
$\Gamma_{67}$ ${{\mathit J / \psi}{(1S)}}{{\mathit f}_{{2}}^{\,'}{(1525)}}$ $_{\parallel}$ , ${{\mathit f}_{{2}}^{\,'}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ $(1.3^{+2.7}_{-0.9})\times 10^{-7}$
$\Gamma_{68}$ ${{\mathit J / \psi}{(1S)}}{{\mathit f}_{{2}}^{\,'}{(1525)}}$ $_{\perp}$ , ${{\mathit f}_{{2}}^{\,'}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ $(5\pm{4})\times 10^{-7}$
$\Gamma_{69}$ ${{\mathit J / \psi}{(1S)}}{{\mathit f}_{{0}}{(1790)}}$ , ${{\mathit f}_{{0}}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ $(5.0^{+11.0}_{-1.1})\times 10^{-6}$
$\Gamma_{70}$ ${{\mathit J / \psi}{(1S)}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ (nonresonant) $(1.8^{+1.1}_{-0.4})\times 10^{-5}$1775
$\Gamma_{71}$ ${{\mathit J / \psi}{(1S)}}{{\overline{\mathit K}}^{0}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ $<4.4\times 10^{-5}$CL=90%1675
$\Gamma_{72}$ ${{\mathit J / \psi}{(1S)}}{{\mathit K}^{+}}{{\mathit K}^{-}}$ $(7.9\pm{0.7})\times 10^{-4}$S=1.0 1601
$\Gamma_{73}$ ${{\mathit J / \psi}{(1S)}}{{\mathit K}^{0}}{{\mathit K}^{-}}{{\mathit \pi}^{+}}$ + c.c. $(9.3\pm{1.3})\times 10^{-4}$1538
$\Gamma_{74}$ ${{\mathit J / \psi}{(1S)}}{{\overline{\mathit K}}^{0}}{{\mathit K}^{+}}{{\mathit K}^{-}}$ $<1.2\times 10^{-5}$CL=90%1333
$\Gamma_{75}$ ${{\mathit J / \psi}{(1S)}}{{\mathit f}_{{2}}^{\,'}{(1525)}}$ $(2.6\pm{0.6})\times 10^{-4}$1304
$\Gamma_{76}$ ${{\mathit J / \psi}{(1S)}}{{\mathit p}}{{\overline{\mathit p}}}$ $<4.8\times 10^{-6}$CL=90%982
$\Gamma_{77}$ ${{\mathit J / \psi}{(1S)}}{{\mathit \gamma}}$ $<7.3\times 10^{-6}$CL=90%1790
$\Gamma_{78}$ ${{\mathit J / \psi}{(1S)}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ $(7.8\pm{1.0})\times 10^{-5}$1731
$\Gamma_{79}$ ${{\mathit J / \psi}{(1S)}}{{\mathit f}_{{1}}{(1285)}}$ $(7.0\pm{1.4})\times 10^{-5}$1460
$\Gamma_{80}$ ${{\mathit \psi}{(2S)}}{{\mathit \eta}}$ $(3.3\pm{0.9})\times 10^{-4}$1338
$\Gamma_{81}$ ${{\mathit \psi}{(2S)}}{{\mathit \eta}^{\,'}}$ $(1.29\pm{0.35})\times 10^{-4}$1158
$\Gamma_{82}$ ${{\mathit \psi}{(2S)}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ $(7.1\pm{1.3})\times 10^{-5}$1397
$\Gamma_{83}$ ${{\mathit \psi}{(2S)}}{{\mathit \phi}}$ $(5.4\pm{0.6})\times 10^{-4}$1120
$\Gamma_{84}$ ${{\mathit \psi}{(2S)}}{{\mathit K}^{-}}{{\mathit \pi}^{+}}$ $(3.1\pm{0.4})\times 10^{-5}$1310
$\Gamma_{85}$ ${{\mathit \psi}{(2S)}}{{\overline{\mathit K}}^{*}{(892)}^{0}}$ $(3.3\pm{0.5})\times 10^{-5}$1196
$\Gamma_{86}$ ${{\mathit \chi}_{{c1}}}{{\mathit \phi}}$ $(2.04\pm{0.30})\times 10^{-4}$1274
$\Gamma_{87}$ ${{\mathit \chi}_{{c1}}}{{\mathit K}^{+}}{{\mathit K}^{-}}$ 1292
$\Gamma_{88}$ ${{\mathit \chi}_{{c2}}}{{\mathit K}^{+}}{{\mathit K}^{-}}$ 1254
$\Gamma_{89}$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ $(6.8\pm{0.8})\times 10^{-7}$2680
$\Gamma_{90}$ ${{\mathit \pi}^{0}}{{\mathit \pi}^{0}}$ $<2.1\times 10^{-4}$CL=90%2680
$\Gamma_{91}$ ${{\mathit \eta}}{{\mathit \pi}^{0}}$ $<1.0\times 10^{-3}$CL=90%2654
$\Gamma_{92}$ ${{\mathit \eta}}{{\mathit \eta}}$ $<1.5\times 10^{-3}$CL=90%2627
$\Gamma_{93}$ ${{\mathit \rho}^{0}}{{\mathit \rho}^{0}}$ $<3.20\times 10^{-4}$CL=90%2569
$\Gamma_{94}$ ${{\mathit \eta}^{\,'}}{{\mathit \eta}^{\,'}}$ $(3.3\pm{0.7})\times 10^{-5}$2507
$\Gamma_{95}$ ${{\mathit \eta}^{\,'}}{{\mathit \phi}}$ $<8.2\times 10^{-7}$CL=90%2495
$\Gamma_{96}$ ${{\mathit \phi}}{{\mathit f}_{{0}}{(980)}}$ , ${{\mathit f}_{{0}}{(980)}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ $(1.12\pm{0.21})\times 10^{-6}$
$\Gamma_{97}$ ${{\mathit \phi}}{{\mathit f}_{{2}}{(1270)}}$ , ${{\mathit f}_{{2}}{(1270)}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ $(6.1^{+1.8}_{-1.5})\times 10^{-7}$
$\Gamma_{98}$ ${{\mathit \phi}}{{\mathit \rho}^{0}}$ $(2.7\pm{0.8})\times 10^{-7}$2526
$\Gamma_{99}$ ${{\mathit \phi}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ $(3.5\pm{0.5})\times 10^{-6}$2579
$\Gamma_{100}$ ${{\mathit \phi}}{{\mathit \phi}}$ $(1.87\pm{0.15})\times 10^{-5}$S=1.0 2482
$\Gamma_{101}$ ${{\mathit \phi}}{{\mathit \phi}}{{\mathit \phi}}$ $(2.2\pm{0.7})\times 10^{-6}$2165
$\Gamma_{102}$ ${{\mathit \pi}^{+}}{{\mathit K}^{-}}$ $(5.6\pm{0.6})\times 10^{-6}$2659
$\Gamma_{103}$ ${{\mathit K}^{+}}{{\mathit K}^{-}}$ $(2.54\pm{0.17})\times 10^{-5}$2638
$\Gamma_{104}$ ${{\mathit K}^{0}}{{\overline{\mathit K}}^{0}}$ $(2.0\pm{0.6})\times 10^{-5}$2637
$\Gamma_{105}$ ${{\mathit K}^{0}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ $(9.4\pm{2.1})\times 10^{-6}$2653
$\Gamma_{106}$ ${{\mathit K}^{0}}{{\mathit K}^{\pm}}{{\mathit \pi}^{\mp}}$ $(8.4\pm{0.9})\times 10^{-5}$2622
$\Gamma_{107}$ ${{\mathit K}^{*}{(892)}^{-}}{{\mathit \pi}^{+}}$ $(2.9\pm{1.1})\times 10^{-6}$2607
$\Gamma_{108}$ ${{\mathit K}^{*}{(892)}^{\pm}}{{\mathit K}^{\mp}}$ $(1.12\pm{0.22})\times 10^{-5}$2585
$\Gamma_{109}$ ${{\mathit K}_S^0}$ ${{\overline{\mathit K}}^{*}{(892)}^{0}}$ + c.c. $(1.6\pm{0.4})\times 10^{-5}$2585
$\Gamma_{110}$ ${{\mathit K}^{0}}{{\mathit K}^{+}}{{\mathit K}^{-}}$ $(1.3\pm{0.6})\times 10^{-6}$2568
$\Gamma_{111}$ ${{\overline{\mathit K}}^{*}{(892)}^{0}}{{\mathit \rho}^{0}}$ $<7.67\times 10^{-4}$CL=90%2550
$\Gamma_{112}$ ${{\overline{\mathit K}}^{*}{(892)}^{0}}{{\mathit K}^{*}{(892)}^{0}}$ $(1.11\pm{0.27})\times 10^{-5}$2531
$\Gamma_{113}$ ${{\mathit K}^{*}{(892)}^{0}}{{\overline{\mathit K}}_{{2}}^{*}{(1430)}^{0}}$ 2408
$\Gamma_{114}$ ${{\mathit K}_{{2}}^{*}{(1430)}^{0}}{{\overline{\mathit K}}^{*}{(892)}^{0}}$ 2408
$\Gamma_{115}$ ${{\mathit K}_{{2}}^{*}{(1430)}^{0}}{{\overline{\mathit K}}_{{2}}^{*}{(1430)}^{0}}$ 2273
$\Gamma_{116}$ ${{\mathit \phi}}{{\mathit K}^{*}{(892)}^{0}}$ $(1.14\pm{0.30})\times 10^{-6}$2507
$\Gamma_{117}$ ${{\mathit p}}{{\overline{\mathit p}}}$ $<1.5\times 10^{-8}$CL=90%2514
$\Gamma_{118}$ ${{\mathit p}}{{\overline{\mathit p}}}{{\mathit K}^{+}}{{\mathit K}^{-}}$ $(4.5\pm{0.5})\times 10^{-6}$2231
$\Gamma_{119}$ ${{\mathit p}}{{\overline{\mathit p}}}{{\mathit K}^{+}}{{\mathit \pi}^{-}}$ $(1.39\pm{0.26})\times 10^{-6}$2355
$\Gamma_{120}$ ${{\mathit p}}{{\overline{\mathit p}}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ $(4.3\pm{2.0})\times 10^{-7}$2454
$\Gamma_{121}$ ${{\mathit p}}{{\overline{\mathit \Lambda}}}{{\mathit K}^{-}}$ + c.c. $(5.5\pm{1.0})\times 10^{-6}$2358
$\Gamma_{122}$ ${{\mathit \Lambda}_{{c}}^{-}}{{\mathit \Lambda}}{{\mathit \pi}^{+}}$ $(3.6\pm{1.6})\times 10^{-4}$
$\Gamma_{123}$ ${{\mathit \Lambda}_{{c}}^{-}}{{\mathit \Lambda}_{{c}}^{+}}$ $<8.0\times 10^{-5}$CL=95%
    constrained fit information