${{\boldsymbol \Delta}}$ BARYONS ($\boldsymbol S$ = 0, $\boldsymbol I$ = 3/2)

${{\mathit \Delta}^{++}}$ = ${{\mathit u}}{{\mathit u}}{{\mathit u}}$ , ${{\mathit \Delta}^{+}}$ = ${\mathit {\mathit u}}$ ${\mathit {\mathit u}}$ ${\mathit {\mathit d}}$, ${{\mathit \Delta}^{0}}$ = ${\mathit {\mathit u}}$ ${\mathit {\mathit d}}$ ${\mathit {\mathit d}}$, ${{\mathit \Delta}^{-}}$ = ${\mathit {\mathit d}}$ ${\mathit {\mathit d}}$ ${\mathit {\mathit d}}$
${{\mathit \Delta}{(1232)}}$
$3/2^{+ }$ ****
${{\mathit \Delta}{(1600)}}$
$3/2^{+ }$ ****
${{\mathit \Delta}{(1620)}}$
$1/2^{- }$ ****
${{\mathit \Delta}{(1700)}}$
$3/2^{- }$ ****
${{\mathit \Delta}{(1750)}}$
$1/2^{+ }$ *
${{\mathit \Delta}{(1900)}}$
$1/2^{- }$ ***
${{\mathit \Delta}{(1905)}}$
$5/2^{+ }$ ****
${{\mathit \Delta}{(1910)}}$
$1/2^{+ }$ ****
${{\mathit \Delta}{(1920)}}$
$3/2^{+ }$ ***
${{\mathit \Delta}{(1930)}}$
$5/2^{- }$ ***
${{\mathit \Delta}{(1940)}}$
$3/2^{- }$ **
${{\mathit \Delta}{(1950)}}$
$7/2^{+ }$ ****
${{\mathit \Delta}{(2000)}}$
$5/2^{+ }$ **
${{\mathit \Delta}{(2150)}}$
$1/2^{- }$ *
${{\mathit \Delta}{(2200)}}$
$7/2^{- }$ ***
${{\mathit \Delta}{(2300)}}$
$9/2^{+ }$ **
${{\mathit \Delta}{(2350)}}$
$5/2^{- }$ *
${{\mathit \Delta}{(2390)}}$
$7/2^{+ }$ *
${{\mathit \Delta}{(2400)}}$
$9/2^{- }$ **
${{\mathit \Delta}{(2420)}}$
$11/2^{+ }$ ****
${{\mathit \Delta}{(2750)}}$
$13/2^{- }$ **
${{\mathit \Delta}{(2950)}}$
$15/2^{+ }$ **
${{\mathit \Delta}{(\sim3000 \text{ Region})}}$ Partial-Wave Analyses
 
****   Existence is certain, and properties are at least fairly explored.
***   Existence ranges from very likely to certain, but further confirmation is desirable and/or quantum numbers, branching fractions, etc. are not well determined.
**   Evidence of existence is only fair.
*   Evidence of existence is poor.