# ${{\boldsymbol \Delta}}$ BARYONS ($\boldsymbol S$ = 0, $\boldsymbol I$ = 3/2)

${{\mathit \Delta}^{++}}$ = ${{\mathit u}}{{\mathit u}}{{\mathit u}}$ , ${{\mathit \Delta}^{+}}$ = ${\mathit {\mathit u}}$ ${\mathit {\mathit u}}$ ${\mathit {\mathit d}}$, ${{\mathit \Delta}^{0}}$ = ${\mathit {\mathit u}}$ ${\mathit {\mathit d}}$ ${\mathit {\mathit d}}$, ${{\mathit \Delta}^{-}}$ = ${\mathit {\mathit d}}$ ${\mathit {\mathit d}}$ ${\mathit {\mathit d}}$
 ${{\mathit \Delta}{(1232)}}$ $3/2^{+ }$ ****
 ${{\mathit \Delta}{(1600)}}$ $3/2^{+ }$ ****
 ${{\mathit \Delta}{(1620)}}$ $1/2^{- }$ ****
 ${{\mathit \Delta}{(1700)}}$ $3/2^{- }$ ****
 ${{\mathit \Delta}{(1750)}}$ $1/2^{+ }$ *
 ${{\mathit \Delta}{(1900)}}$ $1/2^{- }$ ***
 ${{\mathit \Delta}{(1905)}}$ $5/2^{+ }$ ****
 ${{\mathit \Delta}{(1910)}}$ $1/2^{+ }$ ****
 ${{\mathit \Delta}{(1920)}}$ $3/2^{+ }$ ***
 ${{\mathit \Delta}{(1930)}}$ $5/2^{- }$ ***
 ${{\mathit \Delta}{(1940)}}$ $3/2^{- }$ **
 ${{\mathit \Delta}{(1950)}}$ $7/2^{+ }$ ****
 ${{\mathit \Delta}{(2000)}}$ $5/2^{+ }$ **
 ${{\mathit \Delta}{(2150)}}$ $1/2^{- }$ *
 ${{\mathit \Delta}{(2200)}}$ $7/2^{- }$ ***
 ${{\mathit \Delta}{(2300)}}$ $9/2^{+ }$ **
 ${{\mathit \Delta}{(2350)}}$ $5/2^{- }$ *
 ${{\mathit \Delta}{(2390)}}$ $7/2^{+ }$ *
 ${{\mathit \Delta}{(2400)}}$ $9/2^{- }$ **
 ${{\mathit \Delta}{(2420)}}$ $11/2^{+ }$ ****
 ${{\mathit \Delta}{(2750)}}$ $13/2^{- }$ **
 ${{\mathit \Delta}{(2950)}}$ $15/2^{+ }$ **
 ${{\mathit \Delta}{(\sim3000 \text{ Region})}}$ Partial-Wave Analyses
 **** Existence is certain, and properties are at least fairly explored. *** Existence ranges from very likely to certain, but further confirmation is desirable and/or quantum numbers, branching fractions, etc. are not well determined. ** Evidence of existence is only fair. * Evidence of existence is poor.