${{\boldsymbol f}_{{1}}{(1420)}}$ $\rightarrow$ ${{\boldsymbol K}}{{\overline{\boldsymbol K}}}{{\boldsymbol \pi}}$ INSPIRE search

$\Gamma($ ${{\mathit f}_{{1}}{(1420)}}$ $\rightarrow$ ${{\mathit K}}{{\overline{\mathit K}}^{*}{(892)}}$ + c.c.$)/\Gamma($ ${{\mathit f}_{{1}}{(1420)}}$ $\rightarrow$ ${{\mathit K}}{{\overline{\mathit K}}}{{\mathit \pi}}$ $)$
$\Gamma_{2}/\Gamma_{1}$
M006R1
$\Gamma($ ${{\mathit f}_{{1}}{(1420)}}$ $\rightarrow$ ${{\mathit \pi}}{{\mathit \pi}}{{\mathit \rho}}$ $)/\Gamma($ ${{\mathit f}_{{1}}{(1420)}}$ $\rightarrow$ ${{\mathit K}}{{\overline{\mathit K}}}{{\mathit \pi}}$ $)$
$\Gamma_{5}/\Gamma_{1}$
M006R2
$\Gamma($ ${{\mathit f}_{{1}}{(1420)}}$ $\rightarrow$ ${{\mathit \eta}}{{\mathit \pi}}{{\mathit \pi}}$ $)/\Gamma($ ${{\mathit f}_{{1}}{(1420)}}$ $\rightarrow$ ${{\mathit K}}{{\overline{\mathit K}}}{{\mathit \pi}}$ $)$
$\Gamma_{3}/\Gamma_{1}$
M006R3
$\Gamma($ ${{\mathit f}_{{1}}{(1420)}}$ $\rightarrow$ ${{\mathit K}}{{\overline{\mathit K}}}{{\mathit \pi}}$ $)/\Gamma($ ${{\mathit f}_{{1}}{(1420)}}$ $\rightarrow$ ${{\mathit K}}{{\overline{\mathit K}}^{*}{(892)}}$ + c.c.$)$+ $\Gamma($ ${{\mathit f}_{{1}}{(1420)}}$ $\rightarrow$ ${{\mathit a}_{{0}}{(980)}}{{\mathit \pi}}$ $)\rbrack{}$
$\Gamma_{1}/(\Gamma_{2}$+ $\Gamma_{4}$)
M006R6
$\Gamma($ ${{\mathit f}_{{1}}{(1420)}}$ $\rightarrow$ 4 ${{\mathit \pi}}$ $)/\Gamma($ ${{\mathit f}_{{1}}{(1420)}}$ $\rightarrow$ ${{\mathit K}}{{\overline{\mathit K}}}{{\mathit \pi}}$ $)$
$\Gamma_{6}/\Gamma_{1}$
M006R8
$\Gamma($ ${{\mathit f}_{{1}}{(1420)}}$ $\rightarrow$ ${{\mathit \rho}^{0}}{{\mathit \gamma}}$ $)/\Gamma($ ${{\mathit f}_{{1}}{(1420)}}$ $\rightarrow$ ${{\mathit K}}{{\overline{\mathit K}}}{{\mathit \pi}}$ $)$
$\Gamma_{7}/\Gamma_{1}$
M006R10
$\Gamma($ ${{\mathit f}_{{1}}{(1420)}}$ $\rightarrow$ ${{\mathit \phi}}{{\mathit \gamma}}$ $)/\Gamma($ ${{\mathit f}_{{1}}{(1420)}}$ $\rightarrow$ ${{\mathit K}}{{\overline{\mathit K}}}{{\mathit \pi}}$ $)$
$\Gamma_{8}/\Gamma_{1}$
M006R11
$\Gamma($ ${{\mathit f}_{{1}}{(1420)}}$ $\rightarrow$ ${{\mathit K}}{{\overline{\mathit K}}}{{\mathit \pi}}$ $)$ ${\times }\Gamma($ ${{\mathit f}_{{1}}{(1420)}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}^{*}}$ $)/\Gamma_{\text{total}}$
M006G2