${{\mathit e}}$ electric dipole moment $<1.1 \times 10^{-29}$ $\mathit e~$cm CL=90.0%
${{\mathit \mu}}$ electric dipole moment $\vert $d$\vert $ $<1.8 \times 10^{-19}$ $\mathit e~$cm CL=95.0%
   ${{\mathit \mu}}$ decay parameters
      transverse ${{\mathit e}^{+}}$ polarization normal to plane of ${{\mathit \mu}}$ spin, ${{\mathit e}^{+}}$ momentum $-0.002$ $\pm0.008$
      $\alpha {{}^\prime}/\mathit A$ $-0.010$ $\pm0.020$
      $\beta {{}^\prime}/\mathit A$ $0.002$ $\pm0.007$
Re($\mathit d_{{{\mathit \tau}}}$ = ${{\mathit \tau}}$ electric dipole moment) $-2.20 \times 10^{-17}\text{ to }4.5 \times 10^{-17} $ $\mathit e~$cm CL=95.0%
$\mathit P_{T}$ in ${{\mathit K}^{+}}$ $\rightarrow$ ${{\mathit \pi}^{0}}{{\mathit \mu}^{+}}{{\mathit \nu}_{{\mu}}}$ $-0.0017$ $\pm0.0025$
$\mathit P_{T}$ in ${{\mathit K}^{+}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \nu}_{{\mu}}}{{\mathit \gamma}}$ $-0.006$ $\pm0.019$
Im($\xi $) in ${{\mathit K}^{+}}$ $\rightarrow$ ${{\mathit \pi}^{0}}{{\mathit \mu}^{+}}{{\mathit \nu}_{{\mu}}}$ decay (from transverse ${{\mathit \mu}}$ pol.) $-0.006$ $\pm0.008$
asymmetry $\mathit A_{\mathit T}$ in ${{\mathit K}^{0}}-{{\overline{\mathit K}}^{0}}$ mixing $0.0066$ $\pm0.0016$
Im($\xi $) in ${{\mathit K}_{{\mu3}}^{0}}$ decay (from transverse ${{\mathit \mu}}$ pol.) $-0.007$ $\pm0.026$
$\mathit A_{T}$( ${{\mathit D}^{\pm}}$ $\rightarrow$ ${{\mathit K}_S^0}$ ${{\mathit K}^{\pm}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ ) [1] $-0.012$ $\pm0.011$
$\mathit A_{T}$( ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}^{+}}{{\mathit K}^{-}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ ) [1] $0.0029$ $\pm0.0022$
$\mathit A_{T}$( ${{\mathit D}_{{s+-}}}$ $\rightarrow$ ${{\mathit K}_S^0}$ ${{\mathit K}^{\pm}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ ) [1] $-0.014$ $\pm0.008$
$\Delta {{\mathit S}_{{T}}^{+}}$ (${{\mathit S}_{{ {{\mathit \ell}^{-}} , {{\mathit K}_S^0} }}^{-}}$ $−$ ${{\mathit S}_{{ {{\mathit \ell}^{+}} , {{\mathit K}_S^0} }}^{+}}$) $-1.37$ $\pm0.15$
$\Delta {{\mathit S}_{{T}}^{-}}$ (S${}^{+}_{{{\mathit \ell}}{}^{-},{{\mathit K}_S^0} }$ $−$ S${}^{-}_{{{\mathit \ell}}{}^{+},{{\mathit K}_S^0} }$) $1.17$ $\pm0.21$
$\Delta {{\mathit C}_{{T}}^{+}}$ (C${}^{-}_{{{\mathit \ell}}{}^{-},{{\mathit K}_S^0} }$ $−$ C${}^{+}_{{{\mathit \ell}}{}^{+},{{\mathit K}_S^0} }$) $0.10$ $\pm0.16$
$\Delta {{\mathit C}_{{T}}^{-}}$ (C${}^{+}_{{{\mathit \ell}}{}^{-},{{\mathit K}_S^0} }$ $−$ C${}^{-}_{{{\mathit \ell}}{}^{+},{{\mathit K}_S^0} }$) $0.04$ $\pm0.16$
${{\mathit p}}$ electric dipole moment $<2.1 \times 10^{-25}$ $\mathit e~$cm
${{\mathit n}}$ electric dipole moment $<1.8 \times 10^{-26}$ $\mathit e~$cm CL=90.0%
    ${{\mathit n}}$ $\rightarrow$ ${{\mathit p}}{{\mathit e}^{-}}{{\overline{\mathit \nu}}_{{e}}}$ decay parameters
      $\phi _{\mathit AV}$, phase of ${\mathit g}_{{{\mathit A}}}$ relative to ${\mathit g}_{{{\mathit V}}}$ [2] $180.017$ $\pm0.026$ $^\circ{}$
      triple correlation coefficient $\mathit D$ [3] ($-1.2$ $\pm2.0$) $ \times 10^{-4}$
      triple correlation coefficient $\mathit R$ [3] $0.004$ $\pm0.013$
${{\mathit \Lambda}}$ electric dipole moment $<1.5 \times 10^{-16}$ $\mathit e~$cm CL=95.0%
triple correlation coefficient $\mathit D$ for ${{\mathit \Sigma}^{-}}$ $\rightarrow$ ${{\mathit n}}{{\mathit e}^{-}}{{\overline{\mathit \nu}}_{{e}}}$ $0.11$ $\pm0.10$
[1] See the Particle Listings for the (complicated) definition of this quantity.
[2] Time-reversal invariance requires this to be 0$^\circ{}$ or 180$^\circ{}$.
[3] This coefficient is zero if time invariance is not violated.