BARYON NUMBER
$\Gamma\mathrm {( {{\mathit Z}} \rightarrow {{\mathit p}} {{\mathit \mu}})}$ $/$ $\Gamma\mathrm {(total)}$ $<1.8\times 10^{-6}$ CL=95.0%
$\Gamma\mathrm {( {{\mathit Z}} \rightarrow {{\mathit p}} {{\mathit e}})}$ $/$ $\Gamma\mathrm {(total)}$ $<1.8\times 10^{-6}$ CL=95.0%
$\Gamma\mathrm {( {{\mathit \tau}^{-}} \rightarrow {{\overline{\mathit p}}} {{\mathit e}^{-}} {{\mathit \mu}^{+}})}$ $/$ $\Gamma\mathrm {(total)}$ $<1.8\times 10^{-8}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit \tau}^{-}} \rightarrow {{\overline{\mathit p}}} {{\mathit e}^{+}} {{\mathit \mu}^{-}})}$ $/$ $\Gamma\mathrm {(total)}$ $<2.0\times 10^{-8}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit \tau}^{-}} \rightarrow {{\overline{\mathit p}}} {{\mathit e}^{+}} {{\mathit e}^{-}})}$ $/$ $\Gamma\mathrm {(total)}$ $<3.0\times 10^{-8}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit \tau}^{-}} \rightarrow {{\mathit p}} {{\mathit e}^{-}} {{\mathit e}^{-}})}$ $/$ $\Gamma\mathrm {(total)}$ $<3.0\times 10^{-8}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit \tau}^{-}} \rightarrow {{\overline{\mathit p}}} {{\mathit \mu}^{+}} {{\mathit \mu}^{-}})}$ $/$ $\Gamma\mathrm {(total)}$ $<1.8\times 10^{-8}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit \tau}^{-}} \rightarrow {{\mathit p}} {{\mathit \mu}^{-}} {{\mathit \mu}^{-}})}$ $/$ $\Gamma\mathrm {(total)}$ $<4.0\times 10^{-8}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit \tau}^{-}} \rightarrow {{\overline{\mathit \Lambda}}} {{\mathit \pi}^{-}})}$ $/$ $\Gamma\mathrm {(total)}$ $<1.4\times 10^{-7}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit \tau}^{-}} \rightarrow {{\mathit \Lambda}} {{\mathit \pi}^{-}})}$ $/$ $\Gamma\mathrm {(total)}$ $<7.2\times 10^{-8}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit \tau}^{-}} \rightarrow {{\overline{\mathit p}}} {{\mathit \pi}^{0}} {{\mathit \eta}})}$ $/$ $\Gamma\mathrm {(total)}$ $<2.7\times 10^{-5}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit \tau}^{-}} \rightarrow {{\overline{\mathit p}}}2 {{\mathit \pi}^{0}})}$ $/$ $\Gamma\mathrm {(total)}$ $<3.3\times 10^{-5}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit \tau}^{-}} \rightarrow {{\overline{\mathit p}}} {{\mathit \eta}})}$ $/$ $\Gamma\mathrm {(total)}$ $<8.9\times 10^{-6}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit \tau}^{-}} \rightarrow {{\overline{\mathit p}}} {{\mathit \pi}^{0}})}$ $/$ $\Gamma\mathrm {(total)}$ $<1.5\times 10^{-5}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit \tau}^{-}} \rightarrow {{\overline{\mathit p}}} {{\mathit \gamma}})}$ $/$ $\Gamma\mathrm {(total)}$ $<3.5\times 10^{-6}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit D}^{+}} \rightarrow {{\overline{\mathit \Sigma}}^{0}} {{\mathit e}^{+}})}$ $/$ $\Gamma\mathrm {(total)}$ $<1.3\times 10^{-6}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit D}^{+}} \rightarrow {{\mathit \Sigma}^{0}} {{\mathit e}^{+}})}$ $/$ $\Gamma\mathrm {(total)}$ $<1.7\times 10^{-6}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit D}^{+}} \rightarrow {{\overline{\mathit \Lambda}}} {{\mathit e}^{+}})}$ $/$ $\Gamma\mathrm {(total)}$ $<6.5\times 10^{-7}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit D}^{+}} \rightarrow {{\mathit \Lambda}} {{\mathit e}^{+}})}$ $/$ $\Gamma\mathrm {(total)}$ $<1.1\times 10^{-6}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit D}^{0}} \rightarrow {{\overline{\mathit p}}} {{\mathit e}^{+}})}$ $/$ $\Gamma\mathrm {(total)}$ $<1.2\times 10^{-6}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit D}^{0}} \rightarrow {{\mathit p}} {{\mathit e}^{-}})}$ $/$ $\Gamma\mathrm {(total)}$ $<2.2\times 10^{-6}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit B}^{+}} \rightarrow {{\overline{\mathit \Lambda}}^{0}} {{\mathit e}^{+}})}$ $/$ $\Gamma\mathrm {(total)}$ $<8\times 10^{-8}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit B}^{+}} \rightarrow {{\overline{\mathit \Lambda}}^{0}} {{\mathit \mu}^{+}})}$ $/$ $\Gamma\mathrm {(total)}$ $<6\times 10^{-8}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit B}^{+}} \rightarrow {{\mathit \Lambda}^{0}} {{\mathit e}^{+}})}$ $/$ $\Gamma\mathrm {(total)}$ $<3.2\times 10^{-8}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit B}^{+}} \rightarrow {{\mathit \Lambda}^{0}} {{\mathit \mu}^{+}})}$ $/$ $\Gamma\mathrm {(total)}$ $<6\times 10^{-8}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit B}^{0}} \rightarrow {{\mathit p}} {{\mathit \mu}^{-}})}$ $/$ $\Gamma\mathrm {(total)}$ $<2.6\times 10^{-9}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit B}^{0}} \rightarrow {{\mathit \Lambda}_{{{c}}}^{+}} {{\mathit e}^{-}})}$ $/$ $\Gamma\mathrm {(total)}$ $<4\times 10^{-6}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit B}^{0}} \rightarrow {{\mathit \Lambda}_{{{c}}}^{+}} {{\mathit \mu}^{-}})}$ $/$ $\Gamma\mathrm {(total)}$ $<1.4\times 10^{-6}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit B}_{{{s}}}^{0}} \rightarrow {{\mathit p}} {{\mathit \mu}^{-}})}$ $/$ $\Gamma\mathrm {(total)}$ $<1.21\times 10^{-8}$ CL=90.0%
${{\mathit p}}$ mean life $>9 \times 10^{29}$ years CL=90.0%
$\Gamma\mathrm {( {{\mathit N}} \rightarrow {{\mathit \mu}^{+}} {{\mathit K}})}$ $/$ $\Gamma\mathrm {(total)}$ $>26$ (${{\mathit n}}$), $>4500$ (${{\mathit p}}$) CL=90.0%
$\Gamma\mathrm {( {{\mathit N}} \rightarrow {{\mathit e}^{+}} {{\mathit K}})}$ $/$ $\Gamma\mathrm {(total)}$ $>17$ (${{\mathit n}}$), $>1000$ (${{\mathit p}}$) CL=90.0%
$\Gamma\mathrm {( {{\mathit N}} \rightarrow {{\mathit \mu}^{+}} {{\mathit \pi}})}$ $/$ $\Gamma\mathrm {(total)}$ $>3500$ (${{\mathit n}}$), $>16000$ (${{\mathit p}}$) CL=90.0%
A few examples of proton or bound neutron decay follow. For limits on many other nucleon decay channels, see the Baryon Summary Table.
$\Gamma\mathrm {( {{\mathit N}} \rightarrow {{\mathit e}^{+}} {{\mathit \pi}})}$ $/$ $\Gamma\mathrm {(total)}$ $>5300$ (${{\mathit n}}$), $>24000$ (${{\mathit p}}$) CL=90.0%
Mean ${{\mathit n}}{{\overline{\mathit n}}}$-oscillation time (free ${{\mathit n}}$) $>8.6 \times 10^{7}$ s CL=90.0%
Mean ${{\mathit n}}{{\overline{\mathit n}}}$-oscillation time (bound ${{\mathit n}}$) [1] $>4.7 \times 10^{8}$ s CL=90.0%
$\Gamma\mathrm {( {{\mathit \Lambda}} \rightarrow {{\overline{\mathit p}}} {{\mathit \pi}^{+}})}$ $/$ $\Gamma\mathrm {(total)}$ $<9\times 10^{-7}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit \Lambda}} \rightarrow {{\mathit K}_S^0} {{\mathit \nu}})}$ $/$ $\Gamma\mathrm {(total)}$ $<2\times 10^{-5}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit \Lambda}} \rightarrow {{\mathit K}^{-}} {{\mathit \mu}^{+}})}$ $/$ $\Gamma\mathrm {(total)}$ $<3\times 10^{-6}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit \Lambda}} \rightarrow {{\mathit K}^{-}} {{\mathit e}^{+}})}$ $/$ $\Gamma\mathrm {(total)}$ $<2\times 10^{-6}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit \Lambda}} \rightarrow {{\mathit K}^{+}} {{\mathit \mu}^{-}})}$ $/$ $\Gamma\mathrm {(total)}$ $<3\times 10^{-6}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit \Lambda}} \rightarrow {{\mathit K}^{+}} {{\mathit e}^{-}})}$ $/$ $\Gamma\mathrm {(total)}$ $<2\times 10^{-6}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit \Lambda}} \rightarrow {{\mathit \pi}^{-}} {{\mathit \mu}^{+}})}$ $/$ $\Gamma\mathrm {(total)}$ $<6\times 10^{-7}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit \Lambda}} \rightarrow {{\mathit \pi}^{-}} {{\mathit e}^{+}})}$ $/$ $\Gamma\mathrm {(total)}$ $<4\times 10^{-7}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit \Lambda}} \rightarrow {{\mathit \pi}^{+}} {{\mathit \mu}^{-}})}$ $/$ $\Gamma\mathrm {(total)}$ $<6\times 10^{-7}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit \Lambda}} \rightarrow {{\mathit \pi}^{+}} {{\mathit e}^{-}})}$ $/$ $\Gamma\mathrm {(total)}$ $<6\times 10^{-7}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit \Lambda}_{{{c}}}^{+}} \rightarrow {{\overline{\mathit p}}} {{\mathit e}^{+}} {{\mathit \mu}^{+}})}$ $/$ $\Gamma\mathrm {(total)}$ $<1.6\times 10^{-5}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit \Lambda}_{{{c}}}^{+}} \rightarrow {{\overline{\mathit p}}}2 {{\mathit \mu}^{+}})}$ $/$ $\Gamma\mathrm {(total)}$ $<9.4\times 10^{-6}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit \Lambda}_{{{c}}}^{+}} \rightarrow {{\overline{\mathit p}}}2 {{\mathit e}^{+}})}$ $/$ $\Gamma\mathrm {(total)}$ $<2.7\times 10^{-6}$ CL=90.0%
 
[1] There is some controversy about whether nuclear physics and model dependence complicate the analysis for bound neutrons (from which the best limit comes). The first limit here is from reactor experiments with free neutrons.