$\Delta \mathit B$ = 1 WEAK NEUTRAL CURRENT FORBIDDEN
Allowed by higher-order electroweak interactions.
$\Gamma\mathrm {({{\mathit B}^{+}} \rightarrow {{\mathit \rho}{(770)}^{+}} {{\mathit \ell}^{+}} {{\mathit \ell}^{-}})}$ $/$ $\Gamma\mathrm {(total)}$ $<1.89\times 10^{-7}$ CL=90.0%
$\Gamma\mathrm {({{\mathit B}^{+}} \rightarrow {{\mathit \rho}{(770)}^{+}} {{\mathit \mu}^{+}} {{\mathit \mu}^{-}})}$ $/$ $\Gamma\mathrm {(total)}$ $<3.81\times 10^{-7}$ CL=90.0%
$\Gamma\mathrm {({{\mathit B}^{+}} \rightarrow {{\mathit \rho}{(770)}^{+}} {{\mathit e}^{+}} {{\mathit e}^{-}})}$ $/$ $\Gamma\mathrm {(total)}$ $<4.67\times 10^{-7}$ CL=90.0%
$\Gamma\mathrm {({{\mathit B}^{+}} \rightarrow {{\mathit D}_{{{s}}}^{+}} {{\mathit \mu}^{+}} {{\mathit \mu}^{-}})}$ $/$ $\Gamma\mathrm {(total)}$ $<2.4\times 10^{-8}$ CL=90.0%
$\Gamma\mathrm {({{\mathit B}^{+}} \rightarrow {{\overline{\mathit \Lambda}}} {{\mathit p}} {{\mathit \nu}} {{\overline{\mathit \nu}}})}$ $/$ $\Gamma\mathrm {(total)}$ $<3.0\times 10^{-5}$ CL=90.0%
$\Gamma\mathrm {({{\mathit B}^{+}} \rightarrow {{\mathit K}^{+}} {{\mathit \mu}^{+}} {{\mathit \mu}^{-}} nonresonant)}$ $/$ $\Gamma\mathrm {(total)}$ $(4.37\pm{0.27})\times 10^{-7}$
$\Gamma\mathrm {({{\mathit B}^{+}} \rightarrow {{\mathit K}^{+}} {{\mathit \tau}^{+}} {{\mathit \tau}^{-}})}$ $/$ $\Gamma\mathrm {(total)}$ $<2.25\times 10^{-3}$ CL=90.0%
$\Gamma\mathrm {({{\mathit B}^{+}} \rightarrow {{\mathit \phi}} {{\mathit K}^{+}} {{\mathit \mu}^{+}} {{\mathit \mu}^{-}})}$ $/$ $\Gamma\mathrm {(total)}$ $(7.9^{+2.1}_{-1.7})\times 10^{-8}$
$\Gamma\mathrm {({{\mathit B}^{+}} \rightarrow {{\mathit K}^{+}} {{\mathit \pi}^{+}} {{\mathit \pi}^{-}} {{\mathit \mu}^{+}} {{\mathit \mu}^{-}})}$ $/$ $\Gamma\mathrm {(total)}$ $(4.3\pm{0.4})\times 10^{-7}$
$\Gamma\mathrm {({{\mathit B}^{+}} \rightarrow {{\mathit K}^{*}{(892)}^{+}} {{\mathit \nu}} {{\overline{\mathit \nu}}})}$ $/$ $\Gamma\mathrm {(total)}$ $<4.0\times 10^{-5}$ CL=90.0%
$\Gamma\mathrm {({{\mathit B}^{+}} \rightarrow {{\mathit \rho}^{+}} {{\mathit \nu}} {{\overline{\mathit \nu}}})}$ $/$ $\Gamma\mathrm {(total)}$ $<3.0\times 10^{-5}$ CL=90.0%
$\Gamma\mathrm {({{\mathit B}^{+}} \rightarrow {{\mathit \pi}^{+}} {{\mathit \ell}^{+}} {{\mathit \ell}^{-}})}$ $/$ $\Gamma\mathrm {(total)}$ [1] $<4.9\times 10^{-8}$ CL=90.0%
$\Gamma\mathrm {({{\mathit B}^{+}} \rightarrow {{\mathit \pi}^{+}} {{\mathit \nu}} {{\overline{\mathit \nu}}})}$ $/$ $\Gamma\mathrm {(total)}$ $<1.4\times 10^{-5}$ CL=90.0%
$\Gamma\mathrm {({{\mathit B}^{+}} \rightarrow {{\mathit K}^{*}{(892)}^{+}} {{\mathit \ell}^{+}} {{\mathit \ell}^{-}})}$ $/$ $\Gamma\mathrm {(total)}$ [1] $(1.01\pm{0.11})\times 10^{-6}$      (S = 1.1)
$\Gamma\mathrm {({{\mathit B}^{+}} \rightarrow {{\mathit K}^{+}} {{\mathit \ell}^{+}} {{\mathit \ell}^{-}})}$ $/$ $\Gamma\mathrm {(total)}$ [1] $(4.7\pm{0.5})\times 10^{-7}$      (S = 2.3)
$\Gamma\mathrm {({{\mathit B}^{+}} \rightarrow {{\mathit K}^{+}} {{\overline{\mathit \nu}}} {{\mathit \nu}})}$ $/$ $\Gamma\mathrm {(total)}$ $(2.3\pm{0.7})\times 10^{-5}$
$\Gamma\mathrm {({{\mathit B}^{+}} \rightarrow {{\mathit K}^{*}{(892)}^{+}} {{\mathit \mu}^{+}} {{\mathit \mu}^{-}})}$ $/$ $\Gamma\mathrm {(total)}$ $(9.6\pm{1.0})\times 10^{-7}$
$\Gamma\mathrm {({{\mathit B}^{+}} \rightarrow {{\mathit K}^{*}{(892)}^{+}} {{\mathit e}^{+}} {{\mathit e}^{-}})}$ $/$ $\Gamma\mathrm {(total)}$ $(1.55^{+0.40}_{-0.31})\times 10^{-6}$
$\Gamma\mathrm {({{\mathit B}^{+}} \rightarrow {{\mathit \pi}^{+}} {{\mathit \mu}^{+}} {{\mathit \mu}^{-}})}$ $/$ $\Gamma\mathrm {(total)}$ $(1.78\pm{0.23})\times 10^{-8}$
$\Gamma\mathrm {({{\mathit B}^{+}} \rightarrow {{\mathit \pi}^{+}} {{\mathit e}^{+}} {{\mathit e}^{-}})}$ $/$ $\Gamma\mathrm {(total)}$ $<5.4\times 10^{-8}$ CL=90.0%
$\Gamma\mathrm {({{\mathit B}^{+}} \rightarrow {{\mathit K}^{+}} {{\mathit e}^{+}} {{\mathit e}^{-}})}$ $/$ $\Gamma\mathrm {(total)}$ $(5.6\pm{0.6})\times 10^{-7}$
$\Gamma\mathrm {({{\mathit B}^{+}} \rightarrow {{\mathit K}^{+}} {{\mathit \mu}^{+}} {{\mathit \mu}^{-}})}$ $/$ $\Gamma\mathrm {(total)}$ $(4.53\pm{0.35})\times 10^{-7}$      (S = 1.8)
$\Gamma\mathrm {({{\mathit B}^{0}} \rightarrow {{\mathit \omega}} {{\mathit \ell}^{+}} {{\mathit \ell}^{-}})}$ $/$ $\Gamma\mathrm {(total)}$ $<2.20\times 10^{-7}$ CL=90.0%
$\Gamma\mathrm {({{\mathit B}^{0}} \rightarrow {{\mathit \omega}} {{\mathit \mu}^{+}} {{\mathit \mu}^{-}})}$ $/$ $\Gamma\mathrm {(total)}$ $<2.49\times 10^{-7}$ CL=90.0%
$\Gamma\mathrm {({{\mathit B}^{0}} \rightarrow {{\mathit \omega}} {{\mathit e}^{+}} {{\mathit e}^{-}})}$ $/$ $\Gamma\mathrm {(total)}$ $<3.07\times 10^{-7}$ CL=90.0%
$\Gamma\mathrm {({{\mathit B}^{0}} \rightarrow {{\mathit \rho}{(770)}^{0}} {{\mathit e}^{+}} {{\mathit e}^{-}})}$ $/$ $\Gamma\mathrm {(total)}$ $<4.55\times 10^{-7}$ CL=90.0%
$\Gamma\mathrm {({{\mathit B}^{0}} \rightarrow {{\overline{\mathit D}}^{0}} {{\mathit \mu}^{+}} {{\mathit \mu}^{-}})}$ $/$ $\Gamma\mathrm {(total)}$ $<4.0\times 10^{-8}$ CL=90.0%
$\Gamma\mathrm {({{\mathit B}^{0}} \rightarrow {{\mathit K}^{*}{(892)}^{0}} {{\mathit \tau}^{+}} {{\mathit \tau}^{-}})}$ $/$ $\Gamma\mathrm {(total)}$ $<3.1\times 10^{-3}$ CL=90.0%
$\Gamma\mathrm {({{\mathit B}^{0}} \rightarrow {{\mathit a}} {{\mathit a}} , {{\mathit a}} \rightarrow {{\mathit \mu}^{+}} {{\mathit \mu}^{-}})}$ $/$ $\Gamma\mathrm {(total)}$ $<2.3\times 10^{-10}$ CL=95.0%
$\Gamma\mathrm {({{\mathit B}^{0}} \rightarrow {{\mathit \phi}} {{\mathit \mu}^{+}} {{\mathit \mu}^{-}})}$ $/$ $\Gamma\mathrm {(total)}$ $<3.2\times 10^{-9}$ CL=90.0%
$\Gamma\mathrm {({{\mathit B}^{0}} \rightarrow {{\mathit \pi}^{+}} {{\mathit \pi}^{-}} {{\mathit \mu}^{+}} {{\mathit \mu}^{-}})}$ $/$ $\Gamma\mathrm {(total)}$ $(2.1\pm{0.5})\times 10^{-8}$
$\Gamma\mathrm {({{\mathit B}^{0}} \rightarrow {{\mathit S}} {{\mathit P}} , {{\mathit S}} \rightarrow {{\mathit \mu}^{+}} {{\mathit \mu}^{-}} , {{\mathit P}} \rightarrow {{\mathit \mu}^{+}} {{\mathit \mu}^{-}})}$ $/$ $\Gamma\mathrm {(total)}$ [2] $<6.0\times 10^{-10}$ CL=95.0%
$\Gamma\mathrm {({{\mathit B}^{0}} \rightarrow {{\mathit \mu}^{+}} {{\mathit \mu}^{-}} {{\mathit \mu}^{+}} {{\mathit \mu}^{-}})}$ $/$ $\Gamma\mathrm {(total)}$ $<1.8\times 10^{-10}$ CL=95.0%
$\Gamma\mathrm {({{\mathit B}^{0}} \rightarrow {{\mathit \eta}} {{\mathit \mu}^{+}} {{\mathit \mu}^{-}})}$ $/$ $\Gamma\mathrm {(total)}$ $<9.4\times 10^{-8}$ CL=90.0%
$\Gamma\mathrm {({{\mathit B}^{0}} \rightarrow {{\mathit \eta}} {{\mathit e}^{+}} {{\mathit e}^{-}})}$ $/$ $\Gamma\mathrm {(total)}$ $<1.05\times 10^{-7}$ CL=90.0%
$\Gamma\mathrm {({{\mathit B}^{0}} \rightarrow {{\mathit \eta}} {{\mathit \ell}^{+}} {{\mathit \ell}^{-}})}$ $/$ $\Gamma\mathrm {(total)}$ [1] $<4.8\times 10^{-8}$ CL=90.0%
$\Gamma\mathrm {({{\mathit B}^{0}} \rightarrow {{\mathit \phi}} {{\mathit \nu}} {{\overline{\mathit \nu}}})}$ $/$ $\Gamma\mathrm {(total)}$ $<1.27\times 10^{-4}$ CL=90.0%
$\Gamma\mathrm {({{\mathit B}^{0}} \rightarrow {{\mathit \rho}^{0}} {{\mathit \nu}} {{\overline{\mathit \nu}}})}$ $/$ $\Gamma\mathrm {(total)}$ $<4.0\times 10^{-5}$ CL=90.0%
$\Gamma\mathrm {({{\mathit B}^{0}} \rightarrow {{\mathit K}^{0}} {{\mathit \nu}} {{\overline{\mathit \nu}}})}$ $/$ $\Gamma\mathrm {(total)}$ $<2.6\times 10^{-5}$ CL=90.0%
$\Gamma\mathrm {({{\mathit B}^{0}} \rightarrow {{\mathit \pi}^{0}} {{\mathit \nu}} {{\overline{\mathit \nu}}})}$ $/$ $\Gamma\mathrm {(total)}$ $<9\times 10^{-6}$ CL=90.0%
$\Gamma\mathrm {({{\mathit B}^{0}} \rightarrow {{\mathit e}^{+}} {{\mathit e}^{-}} {{\mathit \gamma}})}$ $/$ $\Gamma\mathrm {(total)}$ $<1.2\times 10^{-7}$ CL=90.0%
$\Gamma\mathrm {({{\mathit B}^{0}} \rightarrow {{\mathit \pi}^{0}} {{\mathit \ell}^{+}} {{\mathit \ell}^{-}})}$ $/$ $\Gamma\mathrm {(total)}$ [1] $<3.8\times 10^{-8}$ CL=90.0%
$\Gamma\mathrm {({{\mathit B}^{0}} \rightarrow {{\mathit \pi}^{0}} {{\mathit \mu}^{+}} {{\mathit \mu}^{-}})}$ $/$ $\Gamma\mathrm {(total)}$ $<5.9\times 10^{-8}$ CL=90.0%
$\Gamma\mathrm {({{\mathit B}^{0}} \rightarrow {{\mathit \pi}^{0}} {{\mathit e}^{+}} {{\mathit e}^{-}})}$ $/$ $\Gamma\mathrm {(total)}$ $<7.9\times 10^{-8}$ CL=90.0%
$\Gamma\mathrm {({{\mathit B}^{0}} \rightarrow {{\mathit \tau}^{+}} {{\mathit \tau}^{-}})}$ $/$ $\Gamma\mathrm {(total)}$ $<2.1\times 10^{-3}$ CL=95.0%
$\Gamma\mathrm {({{\mathit B}^{0}} \rightarrow {{\mathit \nu}} {{\overline{\mathit \nu}}} {{\mathit \gamma}})}$ $/$ $\Gamma\mathrm {(total)}$ $<1.6\times 10^{-5}$ CL=90.0%
$\Gamma\mathrm {({{\mathit B}^{0}} \rightarrow invisible)}$ $/$ $\Gamma\mathrm {(total)}$ $<2.4\times 10^{-5}$ CL=90.0%
$\Gamma\mathrm {({{\mathit B}^{0}} \rightarrow {{\mathit K}^{*}{(892)}^{0}} {{\mathit \ell}^{+}} {{\mathit \ell}^{-}})}$ $/$ $\Gamma\mathrm {(total)}$ [1] $(9.9^{+1.2}_{-1.1})\times 10^{-7}$
$\Gamma\mathrm {({{\mathit B}^{0}} \rightarrow {{\mathit K}^{0}} {{\mathit \ell}^{+}} {{\mathit \ell}^{-}})}$ $/$ $\Gamma\mathrm {(total)}$ [1] $(3.3\pm{0.6})\times 10^{-7}$
$\Gamma\mathrm {({{\mathit B}^{0}} \rightarrow {{\mathit K}^{*}{(892)}^{0}} {{\mathit \nu}} {{\overline{\mathit \nu}}})}$ $/$ $\Gamma\mathrm {(total)}$ $<1.8\times 10^{-5}$ CL=90.0%
$\Gamma\mathrm {({{\mathit B}^{0}} \rightarrow {{\mathit \gamma}} {{\mathit \gamma}})}$ $/$ $\Gamma\mathrm {(total)}$ $<6.4\times 10^{-8}$ CL=90.0%
$\Gamma\mathrm {({{\mathit B}^{0}} \rightarrow {{\mathit K}^{*}{(892)}^{0}} {{\mathit e}^{+}} {{\mathit e}^{-}})}$ $/$ $\Gamma\mathrm {(total)}$ $(1.03^{+0.19}_{-0.17})\times 10^{-6}$
$\Gamma\mathrm {({{\mathit B}^{0}} \rightarrow {{\mathit K}^{*}{(892)}^{0}} {{\mathit \mu}^{+}} {{\mathit \mu}^{-}})}$ $/$ $\Gamma\mathrm {(total)}$ $(9.4\pm{0.5})\times 10^{-7}$
$\Gamma\mathrm {({{\mathit B}^{0}} \rightarrow {{\mathit K}^{0}} {{\mathit e}^{+}} {{\mathit e}^{-}})}$ $/$ $\Gamma\mathrm {(total)}$ $(2.5^{+1.1}_{-0.9})\times 10^{-7}$      (S = 1.3)
$\Gamma\mathrm {({{\mathit B}^{0}} \rightarrow {{\mathit K}^{0}} {{\mathit \mu}^{+}} {{\mathit \mu}^{-}})}$ $/$ $\Gamma\mathrm {(total)}$ $(3.39\pm{0.35})\times 10^{-7}$      (S = 1.1)
$\Gamma\mathrm {({{\mathit B}^{0}} \rightarrow {{\mathit \mu}^{+}} {{\mathit \mu}^{-}})}$ $/$ $\Gamma\mathrm {(total)}$ $<1.5\times 10^{-10}$ CL=90.0%
$\Gamma\mathrm {({{\mathit B}^{0}} \rightarrow {{\mathit e}^{+}} {{\mathit e}^{-}})}$ $/$ $\Gamma\mathrm {(total)}$ $<2.5\times 10^{-9}$ CL=90.0%
$\Gamma\mathrm {({{\mathit B}} \rightarrow {{\mathit \rho}} {{\mathit \nu}} {{\overline{\mathit \nu}}})}$ $/$ $\Gamma\mathrm {(total)}$ $<2.8\times 10^{-5}$ CL=90.0%
$\Gamma\mathrm {({{\mathit B}} \rightarrow {{\mathit \pi}} {{\mathit \nu}} {{\overline{\mathit \nu}}})}$ $/$ $\Gamma\mathrm {(total)}$ $<8\times 10^{-6}$ CL=90.0%
$\Gamma\mathrm {({{\mathit B}} \rightarrow {{\mathit \pi}} {{\mathit \mu}^{+}} {{\mathit \mu}^{-}})}$ $/$ $\Gamma\mathrm {(total)}$ $<5.0\times 10^{-8}$ CL=90.0%
$\Gamma\mathrm {({{\mathit B}} \rightarrow {{\mathit \pi}} {{\mathit e}^{+}} {{\mathit e}^{-}})}$ $/$ $\Gamma\mathrm {(total)}$ $<1.10\times 10^{-7}$ CL=90.0%
$\Gamma\mathrm {({{\mathit B}} \rightarrow {{\mathit K}} {{\mathit \nu}} {{\overline{\mathit \nu}}})}$ $/$ $\Gamma\mathrm {(total)}$ $<1.6\times 10^{-5}$ CL=90.0%
$\Gamma\mathrm {({{\mathit B}} \rightarrow {{\mathit K}^{*}} {{\mathit \nu}} {{\overline{\mathit \nu}}})}$ $/$ $\Gamma\mathrm {(total)}$ $<2.7\times 10^{-5}$ CL=90.0%
$\Gamma\mathrm {({{\mathit B}} \rightarrow {{\mathit \pi}} {{\mathit \ell}^{+}} {{\mathit \ell}^{-}})}$ $/$ $\Gamma\mathrm {(total)}$ $<5.9\times 10^{-8}$ CL=90.0%
$\Gamma\mathrm {({{\mathit B}} \rightarrow {{\mathit K}^{*}{(892)}} {{\mathit \ell}^{+}} {{\mathit \ell}^{-}})}$ $/$ $\Gamma\mathrm {(total)}$ $(1.05\pm{0.10})\times 10^{-6}$
$\Gamma\mathrm {({{\mathit B}} \rightarrow {{\mathit K}} {{\mathit \ell}^{+}} {{\mathit \ell}^{-}})}$ $/$ $\Gamma\mathrm {(total)}$ $(4.8\pm{0.4})\times 10^{-7}$
$\Gamma\mathrm {({{\mathit B}} \rightarrow {{\mathit K}^{*}{(892)}} {{\mathit \mu}^{+}} {{\mathit \mu}^{-}})}$ $/$ $\Gamma\mathrm {(total)}$ $(1.06\pm{0.09})\times 10^{-6}$
$\Gamma\mathrm {({{\mathit B}} \rightarrow {{\mathit K}} {{\mathit \mu}^{+}} {{\mathit \mu}^{-}})}$ $/$ $\Gamma\mathrm {(total)}$ $(4.4\pm{0.4})\times 10^{-7}$
$\Gamma\mathrm {({{\mathit B}} \rightarrow {{\mathit K}^{*}{(892)}} {{\mathit e}^{+}} {{\mathit e}^{-}})}$ $/$ $\Gamma\mathrm {(total)}$ $(1.19\pm{0.20})\times 10^{-6}$      (S = 1.2)
$\Gamma\mathrm {({{\mathit B}} \rightarrow {{\mathit K}} {{\mathit e}^{+}} {{\mathit e}^{-}})}$ $/$ $\Gamma\mathrm {(total)}$ $(4.4\pm{0.6})\times 10^{-7}$
$\Gamma\mathrm {({{\mathit B}} \rightarrow {{\mathit s}} {{\mathit \mu}^{+}} {{\mathit \mu}^{-}})}$ $/$ $\Gamma\mathrm {(total)}$ $(4.3\pm{1.0})\times 10^{-6}$
$\Gamma\mathrm {({{\mathit B}} \rightarrow {{\mathit s}} {{\mathit e}^{+}} {{\mathit e}^{-}})}$ $/$ $\Gamma\mathrm {(total)}$ $(6.7\pm{1.7})\times 10^{-6}$      (S = 2.0)
$\Gamma\mathrm {({{\mathit B}} \rightarrow {{\mathit s}} {{\mathit \ell}^{+}} {{\mathit \ell}^{-}})}$ $/$ $\Gamma\mathrm {(total)}$ [1] $(5.8\pm{1.3})\times 10^{-6}$      (S = 1.8)
$\Gamma\mathrm {({{\overline{\mathit b}}} \rightarrow {{\mathit \mu}^{+}} {{\mathit \mu}^{-}} anything)}$ $/$ $\Gamma\mathrm {(total)}$ $<3.2\times 10^{-4}$ CL=90.0%
$\Gamma\mathrm {({{\overline{\mathit b}}} \rightarrow {{\overline{\mathit s}}} {{\overline{\mathit \nu}}} {{\mathit \nu}})}$ $/$ $\Gamma\mathrm {(total)}$ $<6.4\times 10^{-4}$ CL=90.0%
$\Gamma\mathrm {({{\mathit B}_{{{s}}}^{0}} \rightarrow {{\mathit f}_{{{2}}}{(2010)}} {{\mathit \gamma}} , {{\mathit f}_{{{2}}}} \rightarrow {{\mathit K}^{+}} {{\mathit K}^{-}})}$ $/$ $\Gamma\mathrm {(total)}$ $(1.0^{+0.7}_{-0.5})\times 10^{-7}$
$\Gamma\mathrm {({{\mathit B}_{{{s}}}^{0}} \rightarrow {{\mathit \phi}_{{{3}}}{(1850)}} {{\mathit \gamma}} , {{\mathit \phi}_{{{3}}}} \rightarrow {{\mathit K}^{+}} {{\mathit K}^{-}})}$ $/$ $\Gamma\mathrm {(total)}$ $(7^{+6}_{-5})\times 10^{-8}$
$\Gamma\mathrm {({{\mathit B}_{{{s}}}^{0}} \rightarrow {{\mathit \phi}{(1680)}} {{\mathit \gamma}} , {{\mathit \phi}} \rightarrow {{\mathit K}^{+}} {{\mathit K}^{-}})}$ $/$ $\Gamma\mathrm {(total)}$ $(9.2\pm{2.4})\times 10^{-7}$
$\Gamma\mathrm {({{\mathit B}_{{{s}}}^{0}} \rightarrow {{\mathit f}_{{{2}}}^{\,'}{(1525)}} {{\mathit \gamma}})}$ $/$ $\Gamma\mathrm {(total)}$ $(6.6^{+0.9}_{-0.8})\times 10^{-6}$
$\Gamma\mathrm {({{\mathit B}_{{{s}}}^{0}} \rightarrow {{\mathit f}_{{{2}}}{(1270)}} {{\mathit \gamma}})}$ $/$ $\Gamma\mathrm {(total)}$ $(9^{+4}_{-5})\times 10^{-6}$
$\Gamma\mathrm {({{\mathit B}_{{{s}}}^{0}} \rightarrow {{\overline{\mathit D}}^{0}} {{\mathit \mu}^{+}} {{\mathit \mu}^{-}})}$ $/$ $\Gamma\mathrm {(total)}$ $<1.2\times 10^{-7}$ CL=90.0%
$\Gamma\mathrm {({{\mathit B}_{{{s}}}^{0}} \rightarrow {{\mathit \mu}^{+}} {{\mathit \mu}^{-}} {{\mathit \gamma}})}$ $/$ $\Gamma\mathrm {(total)}$ $<4.2\times 10^{-8}$ CL=95.0%
$\Gamma\mathrm {({{\mathit B}_{{{s}}}^{0}} \rightarrow {{\mathit a}} {{\mathit a}} , {{\mathit a}} \rightarrow {{\mathit \mu}^{+}} {{\mathit \mu}^{-}})}$ $/$ $\Gamma\mathrm {(total)}$ $<5.8\times 10^{-10}$ CL=95.0%
$\Gamma\mathrm {({{\mathit B}_{{{s}}}^{0}} \rightarrow {{\mathit f}_{{{2}}}^{\,'}{(1525)}} {{\mathit \mu}^{+}} {{\mathit \mu}^{-}})}$ $/$ $\Gamma\mathrm {(total)}$ $(1.60\pm{0.22})\times 10^{-7}$
$\Gamma\mathrm {({{\mathit B}_{{{s}}}^{0}} \rightarrow {{\overline{\mathit K}}^{*}{(892)}^{0}} {{\mathit \mu}^{+}} {{\mathit \mu}^{-}})}$ $/$ $\Gamma\mathrm {(total)}$ $(2.9\pm{1.1})\times 10^{-8}$
$\Gamma\mathrm {({{\mathit B}_{{{s}}}^{0}} \rightarrow {{\mathit \tau}^{+}} {{\mathit \tau}^{-}})}$ $/$ $\Gamma\mathrm {(total)}$ $<6.8\times 10^{-3}$ CL=95.0%
$\Gamma\mathrm {({{\mathit B}_{{{s}}}^{0}} \rightarrow {{\mathit \pi}^{+}} {{\mathit \pi}^{-}} {{\mathit \mu}^{+}} {{\mathit \mu}^{-}})}$ $/$ $\Gamma\mathrm {(total)}$ $(8.4\pm{1.7})\times 10^{-8}$
$\Gamma\mathrm {({{\mathit B}_{{{s}}}^{0}} \rightarrow {{\mathit S}} {{\mathit P}} , {{\mathit S}} \rightarrow {{\mathit \mu}^{+}} {{\mathit \mu}^{-}} , {{\mathit P}} \rightarrow {{\mathit \mu}^{+}} {{\mathit \mu}^{-}})}$ $/$ $\Gamma\mathrm {(total)}$ [2] $<2.2\times 10^{-9}$ CL=95.0%
$\Gamma\mathrm {({{\mathit B}_{{{s}}}^{0}} \rightarrow {{\mathit \mu}^{+}} {{\mathit \mu}^{-}} {{\mathit \mu}^{+}} {{\mathit \mu}^{-}})}$ $/$ $\Gamma\mathrm {(total)}$ $<8.6\times 10^{-10}$ CL=95.0%
$\Gamma\mathrm {({{\mathit B}_{{{s}}}^{0}} \rightarrow {{\mathit \phi}{(1020)}} {{\mathit \mu}^{+}} {{\mathit \mu}^{-}})}$ $/$ $\Gamma\mathrm {(total)}$ $(8.3\pm{0.4})\times 10^{-7}$
$\Gamma\mathrm {({{\mathit B}_{{{s}}}^{0}} \rightarrow {{\mathit e}^{+}} {{\mathit e}^{-}})}$ $/$ $\Gamma\mathrm {(total)}$ $<9.4\times 10^{-9}$ CL=90.0%
$\Gamma\mathrm {({{\mathit B}_{{{s}}}^{0}} \rightarrow {{\mathit \phi}} {{\mathit \nu}} {{\overline{\mathit \nu}}})}$ $/$ $\Gamma\mathrm {(total)}$ $<5.4\times 10^{-3}$ CL=90.0%
$\Gamma\mathrm {({{\mathit B}_{{{s}}}^{0}} \rightarrow {{\mathit \phi}} {{\mathit \gamma}})}$ $/$ $\Gamma\mathrm {(total)}$ $(3.4\pm{0.4})\times 10^{-5}$
$\Gamma\mathrm {({{\mathit B}_{{{s}}}^{0}} \rightarrow {{\mathit \mu}^{+}} {{\mathit \mu}^{-}})}$ $/$ $\Gamma\mathrm {(total)}$ $(3.34\pm{0.27})\times 10^{-9}$
$\Gamma\mathrm {({{\mathit B}_{{{s}}}^{0}} \rightarrow {{\mathit \gamma}} {{\mathit \gamma}})}$ $/$ $\Gamma\mathrm {(total)}$ $<3.1\times 10^{-6}$ CL=90.0%
 
[1] An ${{\mathit \ell}}$ indicates an ${{\mathit e}}$ or a ${{\mathit \mu}}$ mode, not a sum over these modes.
[2] Here ${{\mathit S}}$ and ${{\mathit P}}$ are the hypothetical scalar and pseudoscalar particles with masses of 2.5 GeV/c${}^{2}$ and 214.3 MeV/c${}^{2}$, respectively.