$\Delta \mathit B$ = 2 VIA MIXING
Allowed in second-order weak interactions, e.g. mixing.
$\chi _{\mathit d}$ (${{\mathit B}^{0}}-{{\overline{\mathit B}}^{0}}$ mixing probability) $0.182$ $\pm0.015$
$\Delta {\mathit m}_{{{\mathit B}^{0}}}$ = ${\mathit m}_{{{\mathit B}_{{{H}}}^{0}}}–{\mathit m}_{{{\mathit B}_{{{L}}}^{0}}}$ ($50.59$ $\pm0.19$) $ \times 10^{10}$ $\hbar{}$ s${}^{-1}$
$\mathit x_{\mathit d}$ = $\Delta {\mathit m}_{{{\mathit B}^{0}}}/\Gamma _{{{\mathit B}^{0}}}$ $0.769$ $\pm0.004$
$\Delta {\mathit m}_{{{\mathit B}_{{{s}}}^{0}}}$ = ${\mathit m}_{\mathrm {{{\mathit B}}{}^{0}_{ {{\mathit s}} {{\mathit H}} }}}$ $-$ ${\mathit m}_{\mathrm {{{\mathit B}}{}^{0}_{ {{\mathit s}} {{\mathit L}} }}}$ ($17.765$ $\pm0.005$) $ \times 10^{12}$ $\hbar{}$ s${}^{-1}$
$\mathit x_{\mathit s}$ = $\Delta {\mathit m}_{{{\mathit B}_{{{s}}}^{0}}}/\Gamma _{{{\mathit B}_{{{s}}}^{0}}}$ $27.03$ $\pm0.09$
$\chi _{\mathit s}$ (${{\mathit B}_{{{s}}}^{0}}-{{\overline{\mathit B}}_{{{s}}}^{0}}$ mixing parameter) $0.499319$ $\pm0.000005$