${{\mathit \gamma}}$ charge (mixed)
|
$<1 \times 10^{-46}$
$\mathit e$
|
|
${{\mathit \gamma}}$ charge (single)
|
$<1 \times 10^{-35}$
$\mathit e$
|
|
${{\mathit e}}$ $\rightarrow$ ${{\mathit \nu}_{{e}}}{{\mathit \gamma}}$ and astrophysical limits
|
[1]
|
$>6.6 \times 10^{28}$
yr
CL=90.0%
|
|
${{\mathit \nu}}$ charge
|
$<4 \times 10^{-35}$
$\mathit e$
CL=95.0%
|
|
$\vert {{\mathit q}_{{p}}}+{{\mathit q}_{{e}}}\vert /{{\mathit e}}$
|
[2]
|
$<1 \times 10^{-21}$
|
|
${{\mathit n}}$ charge
|
($-2$ $\pm8$) $ \times 10^{-22}$
$\mathit e$
|
|
$\Gamma\mathrm {( {{\mathit n}} \rightarrow {{\mathit p}} {{\mathit \nu}_{{e}}} {{\overline{\mathit \nu}}_{{e}}} )}$ $/$ $\Gamma\mathrm {(total)}$
|
$<8\times 10^{-27}$
CL=68.0%
|
|
|
[1] |
This is the best limit for the mode ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit \nu}}{{\mathit \gamma}}$ . The best limit for Nuclear de-excitation experiments is $6.4 \times 10^{24}~$yr.
|
|
[2] |
The limit is from neutrality-of-matter experiments; it assumes $\mathit q_{{{\mathit n}}}$ = $\mathit q_{{{\mathit p}}}$ $+$ $\mathit q_{{{\mathit e}}}$. See also the charge of the neutron.
|
|