$\Delta \mathit S$ = $\Delta \mathit Q$ RULE
Violations allowed in second-order weak interactions.
$\Gamma\mathrm {( {{\mathit K}^{+}} \rightarrow {{\mathit \pi}^{+}} {{\mathit \pi}^{+}} {{\mathit \mu}^{-}} {{\overline{\mathit \nu}}_{{{\mu}}}})}$ $/$ $\Gamma\mathrm {(total)}$ $<3.0\times 10^{-6}$ CL=95.0%
$\Gamma\mathrm {( {{\mathit K}^{+}} \rightarrow {{\mathit \pi}^{+}} {{\mathit \pi}^{+}} {{\mathit e}^{-}} {{\overline{\mathit \nu}}_{{{e}}}})}$ $/$ $\Gamma\mathrm {(total)}$ $<1.3\times 10^{-8}$ CL=90.0%
      Re(x$_{+}$), ${{\mathit K}_{{{e3}}}}$ parameter $-0.0009$ $\pm0.0030$
   $\mathit x$ = A( ${{\overline{\mathit K}}^{0}}$ $\rightarrow$ ${{\mathit \pi}^{-}}{{\mathit \ell}^{+}}{{\mathit \nu}}$)/A( ${{\mathit K}^{0}}$ $\rightarrow$ ${{\mathit \pi}^{-}}{{\mathit \ell}^{+}}{{\mathit \nu}}$) = A($\Delta \mathit S=−\Delta \mathit Q)/A(\Delta \mathit S=\Delta \mathit Q$)
      real part of $\mathit x$ $-0.002$ $\pm0.006$
      imaginary part of $\mathit x$ $0.0012$ $\pm0.0021$
$<0.043$
$\Gamma\mathrm {( {{\mathit \Sigma}^{+}} \rightarrow {{\mathit n}} {{\mathit e}^{+}} {{\mathit \nu}_{{{e}}}})}$ $/$ $\Gamma\mathrm {(total)}$ $<5\times 10^{-6}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit \Sigma}^{+}} \rightarrow {{\mathit n}} {{\mathit \mu}^{+}} {{\mathit \nu}_{{{\mu}}}})}$ $/$ $\Gamma\mathrm {(total)}$ $<3.0\times 10^{-5}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit \Xi}^{0}} \rightarrow {{\mathit \Sigma}^{-}} {{\mathit \mu}^{+}} {{\mathit \nu}_{{{\mu}}}})}$ $/$ $\Gamma\mathrm {(total)}$ $<9\times 10^{-4}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit \Xi}^{0}} \rightarrow {{\mathit \Sigma}^{-}} {{\mathit e}^{+}} {{\mathit \nu}_{{{e}}}})}$ $/$ $\Gamma\mathrm {(total)}$ $<1.6\times 10^{-4}$ CL=90.0%