$\Delta \mathit B$ = 2 VIA MIXING
Allowed in second-order weak interactions, e.g. mixing.
$\chi _{\mathit d}$ (${{\mathit B}^{0}}-{{\overline{\mathit B}}^{0}}$ mixing probability) $0.182$ $\pm0.015$
$\Delta {\mathit m}_{{{\mathit B}^{0}}}$ = ${\mathit m}_{{{\mathit B}_{{H}}^{0}}}–{\mathit m}_{{{\mathit B}_{{L}}^{0}}}$ ($50.59$ $\pm0.19$) $ \times 10^{10}$ $\hbar{}$ s${}^{-1}$
$\mathit x_{\mathit d}$ = $\Delta {\mathit m}_{{{\mathit B}^{0}}}/\Gamma _{{{\mathit B}^{0}} }$ $0.769$ $\pm0.004$
$\Delta {\mathit m}_{{{\mathit B}_{{s}}^{0}}}$ = ${\mathit m}_{\mathrm {{{\mathit B}} {}^{0}_{ {{\mathit s}} {{\mathit H}} }}}$ $-$ ${\mathit m}_{\mathrm {{{\mathit B}} {}^{0}_{ {{\mathit s}} {{\mathit L}} }}}$ ($17.765$ $\pm0.005$) $ \times 10^{12}$ $\hbar{}$ s${}^{-1}$
$\mathit x_{\mathit s}$ = $\Delta {\mathit m}_{{{\mathit B}_{{s}}^{0}}}/\Gamma _{{{\mathit B}_{{s}}^{0}} }$ $27.01$ $\pm0.10$
$\chi _{\mathit s}$ (${{\mathit B}_{{s}}^{0}}-{{\overline{\mathit B}}_{{s}}^{0}}$ mixing parameter) $0.499318$ $\pm0.000005$