TOTAL LEPTON NUMBER
Violation of total lepton number conservation also implies violation of lepton family number conservation.
$\Gamma\mathrm {( {{\mathit Z}} \rightarrow {{\mathit p}} {{\mathit \mu}})}$ $/$ $\Gamma\mathrm {(total)}$ $<1.8\times 10^{-6}$ CL=95.0%
$\Gamma\mathrm {( {{\mathit Z}} \rightarrow {{\mathit p}} {{\mathit e}})}$ $/$ $\Gamma\mathrm {(total)}$ $<1.8\times 10^{-6}$ CL=95.0%
   limit on ${{\mathit \mu}^{-}}$ $\rightarrow$ ${{\mathit e}^{+}}$ conversion
      ${\mathit \sigma (}$ ${{\mathit \mu}^{-}}$ ${}^{32}\mathrm {S}$ $\rightarrow$ ${{\mathit e}^{+}}{}^{32}\mathrm {Si}^{*}{)}$ / ${\mathit \sigma (}$ ${{\mathit \mu}^{-}}$ ${}^{32}\mathrm {S}$ $\rightarrow$ ${{\mathit \nu}_{{{\mu}}}}{}^{32}\mathrm {P}^{*}{)}$ $<9 \times 10^{-10}$ CL=90.0%
      ${\mathit \sigma (}$ ${{\mathit \mu}^{-}}$ ${}^{127}\mathrm {I}$ $\rightarrow$ ${{\mathit e}^{+}}{}^{127}\mathrm {Sb}^{*}{)}$ / ${\mathit \sigma (}$ ${{\mathit \mu}^{-}}$ ${}^{127}\mathrm {I}$ $\rightarrow$ anything${)}$ $<3 \times 10^{-10}$ CL=90.0%
      ${\mathit \sigma (}$ ${{\mathit \mu}^{-}}$ ${}^{}\mathrm {Ti}$ $\rightarrow$ ${{\mathit e}^{+}}{}^{}\mathrm {Ca}{)}$ / ${\mathit \sigma (}$ ${{\mathit \mu}^{-}}$ ${}^{}\mathrm {Ti}$ $\rightarrow$ capture${)}$ $<3.6 \times 10^{-11}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit \tau}^{-}} \rightarrow {{\overline{\mathit p}}} {{\mathit e}^{-}} {{\mathit \mu}^{+}})}$ $/$ $\Gamma\mathrm {(total)}$ $<1.8\times 10^{-8}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit \tau}^{-}} \rightarrow {{\overline{\mathit p}}} {{\mathit e}^{+}} {{\mathit \mu}^{-}})}$ $/$ $\Gamma\mathrm {(total)}$ $<2.0\times 10^{-8}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit \tau}^{-}} \rightarrow {{\overline{\mathit p}}} {{\mathit e}^{+}} {{\mathit e}^{-}})}$ $/$ $\Gamma\mathrm {(total)}$ $<3.0\times 10^{-8}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit \tau}^{-}} \rightarrow {{\mathit p}} {{\mathit e}^{-}} {{\mathit e}^{-}})}$ $/$ $\Gamma\mathrm {(total)}$ $<3.0\times 10^{-8}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit \tau}^{-}} \rightarrow {{\overline{\mathit p}}} {{\mathit \mu}^{+}} {{\mathit \mu}^{-}})}$ $/$ $\Gamma\mathrm {(total)}$ $<1.8\times 10^{-8}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit \tau}^{-}} \rightarrow {{\mathit p}} {{\mathit \mu}^{-}} {{\mathit \mu}^{-}})}$ $/$ $\Gamma\mathrm {(total)}$ $<4.0\times 10^{-8}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit \tau}^{-}} \rightarrow {{\overline{\mathit \Lambda}}} {{\mathit \pi}^{-}})}$ $/$ $\Gamma\mathrm {(total)}$ $<1.4\times 10^{-7}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit \tau}^{-}} \rightarrow {{\mathit \Lambda}} {{\mathit \pi}^{-}})}$ $/$ $\Gamma\mathrm {(total)}$ $<7.2\times 10^{-8}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit \tau}^{-}} \rightarrow {{\overline{\mathit p}}} {{\mathit \pi}^{0}} {{\mathit \eta}})}$ $/$ $\Gamma\mathrm {(total)}$ $<2.7\times 10^{-5}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit \tau}^{-}} \rightarrow {{\overline{\mathit p}}}2 {{\mathit \pi}^{0}})}$ $/$ $\Gamma\mathrm {(total)}$ $<3.3\times 10^{-5}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit \tau}^{-}} \rightarrow {{\mathit \mu}^{+}} {{\mathit K}^{-}} {{\mathit K}^{-}})}$ $/$ $\Gamma\mathrm {(total)}$ $<4.7\times 10^{-8}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit \tau}^{-}} \rightarrow {{\mathit e}^{+}} {{\mathit K}^{-}} {{\mathit K}^{-}})}$ $/$ $\Gamma\mathrm {(total)}$ $<3.3\times 10^{-8}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit \tau}^{-}} \rightarrow {{\overline{\mathit p}}} {{\mathit \eta}})}$ $/$ $\Gamma\mathrm {(total)}$ $<8.9\times 10^{-6}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit \tau}^{-}} \rightarrow {{\overline{\mathit p}}} {{\mathit \pi}^{0}})}$ $/$ $\Gamma\mathrm {(total)}$ $<1.5\times 10^{-5}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit \tau}^{-}} \rightarrow {{\overline{\mathit p}}} {{\mathit \gamma}})}$ $/$ $\Gamma\mathrm {(total)}$ $<3.5\times 10^{-6}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit \tau}^{-}} \rightarrow {{\mathit \mu}^{+}} {{\mathit \pi}^{-}} {{\mathit K}^{-}})}$ $/$ $\Gamma\mathrm {(total)}$ $<4.8\times 10^{-8}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit \tau}^{-}} \rightarrow {{\mathit e}^{+}} {{\mathit \pi}^{-}} {{\mathit K}^{-}})}$ $/$ $\Gamma\mathrm {(total)}$ $<3.2\times 10^{-8}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit \tau}^{-}} \rightarrow {{\mathit \mu}^{+}} {{\mathit \pi}^{-}} {{\mathit \pi}^{-}})}$ $/$ $\Gamma\mathrm {(total)}$ $<3.9\times 10^{-8}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit \tau}^{-}} \rightarrow {{\mathit e}^{+}} {{\mathit \pi}^{-}} {{\mathit \pi}^{-}})}$ $/$ $\Gamma\mathrm {(total)}$ $<2.0\times 10^{-8}$ CL=90.0%
${{\mathit t}}_{1/2{}}$( ${}^{76}\mathrm {Ge}$ $\rightarrow$ ${}^{76}\mathrm {Se}$ $\text{+}$ 2 ${{\mathit e}^{-}}$ ) $>9.0 \times 10^{25}$ yr CL=90.0%
${{\mathit t}}_{1/2{}}$( ${}^{136}\mathrm {Xe}$ $\rightarrow$ ${}^{136}\mathrm {Ba}$ $\text{+}$ 2 ${{\mathit e}^{-}}$ ) $>10.7 \times 10^{25}$ yr CL=90.0%
${{\mathit t}}_{1/2{}}$( ${}^{130}\mathrm {Te}$ $\rightarrow$ ${}^{130}\mathrm {Xe}$ $\text{+}$ 2 ${{\mathit e}^{-}}$ ) $>1.5 \times 10^{25}$ yr CL=90.0%
$\Gamma\mathrm {( {{\mathit \pi}^{+}} \rightarrow {{\mathit \mu}^{+}} {{\overline{\mathit \nu}}_{{{e}}}})}$ $/$ $\Gamma\mathrm {(total)}$ [1] $<1.5\times 10^{-3}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit K}^{+}} \rightarrow {{\mathit \pi}^{-}} {{\mathit \pi}^{0}} {{\mathit e}^{+}} {{\mathit e}^{+}})}$ $/$ $\Gamma\mathrm {(total)}$ $<8.5\times 10^{-10}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit K}^{+}} \rightarrow {{\mathit \pi}^{-}} {{\mathit \mu}^{+}} {{\mathit \mu}^{+}})}$ $/$ $\Gamma\mathrm {(total)}$ $<4.2\times 10^{-11}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit K}^{+}} \rightarrow {{\mathit \pi}^{-}} {{\mathit \mu}^{+}} {{\mathit e}^{+}})}$ $/$ $\Gamma\mathrm {(total)}$ $<4.2\times 10^{-11}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit K}^{+}} \rightarrow {{\mathit \pi}^{0}} {{\mathit e}^{+}} {{\overline{\mathit \nu}}_{{{e}}}})}$ $/$ $\Gamma\mathrm {(total)}$ $<3\times 10^{-3}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit K}^{+}} \rightarrow {{\mathit \mu}^{+}} {{\overline{\mathit \nu}}_{{{e}}}})}$ $/$ $\Gamma\mathrm {(total)}$ [1] $<3.3\times 10^{-3}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit K}^{+}} \rightarrow {{\mathit \pi}^{-}} {{\mathit e}^{+}} {{\mathit e}^{+}})}$ $/$ $\Gamma\mathrm {(total)}$ $<5.3\times 10^{-11}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit D}^{+}} \rightarrow {{\overline{\mathit \Sigma}}^{0}} {{\mathit e}^{+}})}$ $/$ $\Gamma\mathrm {(total)}$ $<1.3\times 10^{-6}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit D}^{+}} \rightarrow {{\mathit \Sigma}^{0}} {{\mathit e}^{+}})}$ $/$ $\Gamma\mathrm {(total)}$ $<1.7\times 10^{-6}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit D}^{+}} \rightarrow {{\overline{\mathit \Lambda}}} {{\mathit e}^{+}})}$ $/$ $\Gamma\mathrm {(total)}$ $<6.5\times 10^{-7}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit D}^{+}} \rightarrow {{\mathit \Lambda}} {{\mathit e}^{+}})}$ $/$ $\Gamma\mathrm {(total)}$ $<1.1\times 10^{-6}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit D}^{+}} \rightarrow {{\mathit K}^{*}{(892)}^{-}}2 {{\mathit \mu}^{+}})}$ $/$ $\Gamma\mathrm {(total)}$ $<8.5\times 10^{-4}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit D}^{+}} \rightarrow {{\mathit \rho}^{-}}2 {{\mathit \mu}^{+}})}$ $/$ $\Gamma\mathrm {(total)}$ $<5.6\times 10^{-4}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit D}^{+}} \rightarrow {{\mathit K}^{-}} {{\mathit e}^{+}} {{\mathit \mu}^{+}})}$ $/$ $\Gamma\mathrm {(total)}$ $<1.9\times 10^{-6}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit D}^{+}} \rightarrow {{\mathit K}^{-}}2 {{\mathit \mu}^{+}})}$ $/$ $\Gamma\mathrm {(total)}$ $<1.0\times 10^{-5}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit D}^{+}} \rightarrow {{\mathit K}^{-}}2 {{\mathit e}^{+}})}$ $/$ $\Gamma\mathrm {(total)}$ $<9\times 10^{-7}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit D}^{+}} \rightarrow {{\mathit \pi}^{-}} {{\mathit e}^{+}} {{\mathit \mu}^{+}})}$ $/$ $\Gamma\mathrm {(total)}$ $<1.3\times 10^{-7}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit D}^{+}} \rightarrow {{\mathit \pi}^{-}}2 {{\mathit \mu}^{+}})}$ $/$ $\Gamma\mathrm {(total)}$ $<1.4\times 10^{-8}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit D}^{+}} \rightarrow {{\mathit \pi}^{-}}2 {{\mathit e}^{+}})}$ $/$ $\Gamma\mathrm {(total)}$ $<5.3\times 10^{-7}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit D}^{0}} \rightarrow {{\overline{\mathit p}}} {{\mathit e}^{+}})}$ $/$ $\Gamma\mathrm {(total)}$ $<1.2\times 10^{-6}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit D}^{0}} \rightarrow {{\mathit p}} {{\mathit e}^{-}})}$ $/$ $\Gamma\mathrm {(total)}$ $<2.2\times 10^{-6}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit D}^{0}} \rightarrow 2 {{\mathit K}^{-}} {{\mathit e}^{+}} {{\mathit \mu}^{+}})}$ $/$ $\Gamma\mathrm {(total)}$ $<5.8\times 10^{-7}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit D}^{0}} \rightarrow {{\mathit K}^{-}} {{\mathit \pi}^{-}} {{\mathit e}^{+}} {{\mathit \mu}^{+}})}$ $/$ $\Gamma\mathrm {(total)}$ $<2.10\times 10^{-6}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit D}^{0}} \rightarrow {{\mathit \pi}^{-}} {{\mathit \pi}^{-}} {{\mathit e}^{+}} {{\mathit \mu}^{+}})}$ $/$ $\Gamma\mathrm {(total)}$ $<3.06\times 10^{-6}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit D}^{0}} \rightarrow 2 {{\mathit K}^{-}}2 {{\mathit \mu}^{+}})}$ $/$ $\Gamma\mathrm {(total)}$ $<1.0\times 10^{-7}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit D}^{0}} \rightarrow 2 {{\mathit K}^{-}}2 {{\mathit e}^{+}})}$ $/$ $\Gamma\mathrm {(total)}$ $<3.4\times 10^{-7}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit D}^{0}} \rightarrow {{\mathit K}^{-}} {{\mathit \pi}^{-}}2 {{\mathit \mu}^{+}})}$ $/$ $\Gamma\mathrm {(total)}$ $<5.3\times 10^{-7}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit D}^{0}} \rightarrow {{\mathit K}^{-}} {{\mathit \pi}^{-}}2 {{\mathit e}^{+}})}$ $/$ $\Gamma\mathrm {(total)}$ $<5.0\times 10^{-7}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit D}^{0}} \rightarrow 2 {{\mathit \pi}^{-}}2 {{\mathit \mu}^{+}})}$ $/$ $\Gamma\mathrm {(total)}$ $<1.52\times 10^{-6}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit D}^{0}} \rightarrow 2 {{\mathit \pi}^{-}}2 {{\mathit e}^{+}})}$ $/$ $\Gamma\mathrm {(total)}$ $<9.1\times 10^{-7}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit D}_{{{s}}}^{+}} \rightarrow {{\mathit K}^{-}} {{\mathit e}^{+}} {{\mathit \mu}^{+}})}$ $/$ $\Gamma\mathrm {(total)}$ $<2.6\times 10^{-7}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit D}_{{{s}}}^{+}} \rightarrow {{\mathit K}^{-}}2 {{\mathit e}^{+}})}$ $/$ $\Gamma\mathrm {(total)}$ $<7.7\times 10^{-7}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit D}_{{{s}}}^{+}} \rightarrow {{\mathit \pi}^{-}} {{\mathit e}^{+}} {{\mathit \mu}^{+}})}$ $/$ $\Gamma\mathrm {(total)}$ $<6.3\times 10^{-7}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit D}_{{{s}}}^{+}} \rightarrow {{\mathit \pi}^{-}}2 {{\mathit e}^{+}})}$ $/$ $\Gamma\mathrm {(total)}$ $<1.4\times 10^{-6}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit D}_{{{s}}}^{+}} \rightarrow {{\mathit K}^{*}{(892)}^{-}}2 {{\mathit \mu}^{+}})}$ $/$ $\Gamma\mathrm {(total)}$ $<1.4\times 10^{-3}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit D}_{{{s}}}^{+}} \rightarrow {{\mathit K}^{-}}2 {{\mathit \mu}^{+}})}$ $/$ $\Gamma\mathrm {(total)}$ $<2.6\times 10^{-8}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit D}_{{{s}}}^{+}} \rightarrow {{\mathit \pi}^{-}}2 {{\mathit \mu}^{+}})}$ $/$ $\Gamma\mathrm {(total)}$ $<8.6\times 10^{-8}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit B}^{+}} \rightarrow {{\overline{\mathit D}}^{0}} {{\mathit \pi}^{-}} {{\mathit \mu}^{+}} {{\mathit \mu}^{+}})}$ $/$ $\Gamma\mathrm {(total)}$ $<1.5\times 10^{-6}$ CL=95.0%
$\Gamma\mathrm {( {{\mathit B}^{+}} \rightarrow {{\mathit D}_{{{s}}}^{-}} {{\mathit \mu}^{+}} {{\mathit \mu}^{+}})}$ $/$ $\Gamma\mathrm {(total)}$ $<5.8\times 10^{-7}$ CL=95.0%
$\Gamma\mathrm {( {{\mathit B}^{+}} \rightarrow {{\mathit D}^{*-}} {{\mathit \mu}^{+}} {{\mathit \mu}^{+}})}$ $/$ $\Gamma\mathrm {(total)}$ $<2.4\times 10^{-6}$ CL=95.0%
$\Gamma\mathrm {( {{\mathit B}^{+}} \rightarrow {{\mathit D}^{-}} {{\mathit \mu}^{+}} {{\mathit \mu}^{+}})}$ $/$ $\Gamma\mathrm {(total)}$ $<6.9\times 10^{-7}$ CL=95.0%
$\Gamma\mathrm {( {{\mathit B}^{+}} \rightarrow {{\mathit D}^{-}} {{\mathit e}^{+}} {{\mathit \mu}^{+}})}$ $/$ $\Gamma\mathrm {(total)}$ $<1.8\times 10^{-6}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit B}^{+}} \rightarrow {{\mathit D}^{-}} {{\mathit e}^{+}} {{\mathit e}^{+}})}$ $/$ $\Gamma\mathrm {(total)}$ $<2.6\times 10^{-6}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit B}^{+}} \rightarrow {{\overline{\mathit \Lambda}}^{0}} {{\mathit e}^{+}})}$ $/$ $\Gamma\mathrm {(total)}$ $<8\times 10^{-8}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit B}^{+}} \rightarrow {{\overline{\mathit \Lambda}}^{0}} {{\mathit \mu}^{+}})}$ $/$ $\Gamma\mathrm {(total)}$ $<6\times 10^{-8}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit B}^{+}} \rightarrow {{\mathit \Lambda}^{0}} {{\mathit e}^{+}})}$ $/$ $\Gamma\mathrm {(total)}$ $<3.2\times 10^{-8}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit B}^{+}} \rightarrow {{\mathit \Lambda}^{0}} {{\mathit \mu}^{+}})}$ $/$ $\Gamma\mathrm {(total)}$ $<6\times 10^{-8}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit B}^{+}} \rightarrow {{\mathit \rho}^{-}} {{\mathit \mu}^{+}} {{\mathit \mu}^{+}})}$ $/$ $\Gamma\mathrm {(total)}$ $<4.2\times 10^{-7}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit B}^{+}} \rightarrow {{\mathit \rho}^{-}} {{\mathit e}^{+}} {{\mathit \mu}^{+}})}$ $/$ $\Gamma\mathrm {(total)}$ $<4.7\times 10^{-7}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit B}^{+}} \rightarrow {{\mathit K}^{*}{(892)}^{-}} {{\mathit e}^{+}} {{\mathit \mu}^{+}})}$ $/$ $\Gamma\mathrm {(total)}$ $<3.0\times 10^{-7}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit B}^{+}} \rightarrow {{\mathit K}^{*}{(892)}^{-}} {{\mathit \mu}^{+}} {{\mathit \mu}^{+}})}$ $/$ $\Gamma\mathrm {(total)}$ $<5.9\times 10^{-7}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit B}^{+}} \rightarrow {{\mathit \rho}^{-}} {{\mathit e}^{+}} {{\mathit e}^{+}})}$ $/$ $\Gamma\mathrm {(total)}$ $<1.7\times 10^{-7}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit B}^{+}} \rightarrow {{\mathit K}^{*}{(892)}^{-}} {{\mathit e}^{+}} {{\mathit e}^{+}})}$ $/$ $\Gamma\mathrm {(total)}$ $<4.0\times 10^{-7}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit B}^{+}} \rightarrow {{\mathit K}^{-}} {{\mathit \mu}^{+}} {{\mathit \mu}^{+}})}$ $/$ $\Gamma\mathrm {(total)}$ $<4.1\times 10^{-8}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit B}^{+}} \rightarrow {{\mathit K}^{-}} {{\mathit e}^{+}} {{\mathit \mu}^{+}})}$ $/$ $\Gamma\mathrm {(total)}$ $<1.6\times 10^{-7}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit B}^{+}} \rightarrow {{\mathit K}^{-}} {{\mathit e}^{+}} {{\mathit e}^{+}})}$ $/$ $\Gamma\mathrm {(total)}$ $<3.0\times 10^{-8}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit B}^{+}} \rightarrow {{\mathit \pi}^{-}} {{\mathit \mu}^{+}} {{\mathit \mu}^{+}})}$ $/$ $\Gamma\mathrm {(total)}$ $<4.0\times 10^{-9}$ CL=95.0%
$\Gamma\mathrm {( {{\mathit B}^{+}} \rightarrow {{\mathit \pi}^{-}} {{\mathit e}^{+}} {{\mathit \mu}^{+}})}$ $/$ $\Gamma\mathrm {(total)}$ $<1.5\times 10^{-7}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit B}^{+}} \rightarrow {{\mathit \pi}^{-}} {{\mathit e}^{+}} {{\mathit e}^{+}})}$ $/$ $\Gamma\mathrm {(total)}$ $<2.3\times 10^{-8}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit B}^{0}} \rightarrow {{\mathit p}} {{\mathit \mu}^{-}})}$ $/$ $\Gamma\mathrm {(total)}$ $<2.6\times 10^{-9}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit B}^{0}} \rightarrow {{\mathit \Lambda}_{{{c}}}^{+}} {{\mathit e}^{-}})}$ $/$ $\Gamma\mathrm {(total)}$ $<4\times 10^{-6}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit B}^{0}} \rightarrow {{\mathit \Lambda}_{{{c}}}^{+}} {{\mathit \mu}^{-}})}$ $/$ $\Gamma\mathrm {(total)}$ $<1.4\times 10^{-6}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit B}_{{{s}}}^{0}} \rightarrow {{\mathit p}} {{\mathit \mu}^{-}})}$ $/$ $\Gamma\mathrm {(total)}$ $<1.21\times 10^{-8}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit \Lambda}} \rightarrow {{\mathit K}_S^0} {{\mathit \nu}})}$ $/$ $\Gamma\mathrm {(total)}$ $<2\times 10^{-5}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit \Lambda}} \rightarrow {{\mathit K}^{-}} {{\mathit \mu}^{+}})}$ $/$ $\Gamma\mathrm {(total)}$ $<3\times 10^{-6}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit \Lambda}} \rightarrow {{\mathit K}^{-}} {{\mathit e}^{+}})}$ $/$ $\Gamma\mathrm {(total)}$ $<2\times 10^{-6}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit \Lambda}} \rightarrow {{\mathit K}^{+}} {{\mathit \mu}^{-}})}$ $/$ $\Gamma\mathrm {(total)}$ $<3\times 10^{-6}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit \Lambda}} \rightarrow {{\mathit K}^{+}} {{\mathit e}^{-}})}$ $/$ $\Gamma\mathrm {(total)}$ $<2\times 10^{-6}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit \Lambda}} \rightarrow {{\mathit \pi}^{-}} {{\mathit \mu}^{+}})}$ $/$ $\Gamma\mathrm {(total)}$ $<6\times 10^{-7}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit \Lambda}} \rightarrow {{\mathit \pi}^{-}} {{\mathit e}^{+}})}$ $/$ $\Gamma\mathrm {(total)}$ $<4\times 10^{-7}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit \Lambda}} \rightarrow {{\mathit \pi}^{+}} {{\mathit \mu}^{-}})}$ $/$ $\Gamma\mathrm {(total)}$ $<6\times 10^{-7}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit \Lambda}} \rightarrow {{\mathit \pi}^{+}} {{\mathit e}^{-}})}$ $/$ $\Gamma\mathrm {(total)}$ $<6\times 10^{-7}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit \Sigma}^{-}} \rightarrow {{\mathit p}} {{\mathit e}^{-}} {{\mathit e}^{-}})}$ $/$ $\Gamma\mathrm {(total)}$ $<6.7\times 10^{-5}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit \Xi}^{-}} \rightarrow {{\mathit p}} {{\mathit \mu}^{-}} {{\mathit \mu}^{-}})}$ $/$ $\Gamma\mathrm {(total)}$ $<4\times 10^{-8}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit \Lambda}_{{{c}}}^{+}} \rightarrow {{\overline{\mathit p}}} {{\mathit e}^{+}} {{\mathit \mu}^{+}})}$ $/$ $\Gamma\mathrm {(total)}$ $<1.6\times 10^{-5}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit \Lambda}_{{{c}}}^{+}} \rightarrow {{\overline{\mathit p}}}2 {{\mathit \mu}^{+}})}$ $/$ $\Gamma\mathrm {(total)}$ $<9.4\times 10^{-6}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit \Lambda}_{{{c}}}^{+}} \rightarrow {{\overline{\mathit p}}}2 {{\mathit e}^{+}})}$ $/$ $\Gamma\mathrm {(total)}$ $<2.7\times 10^{-6}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit \Lambda}_{{{c}}}^{+}} \rightarrow {{\mathit \Sigma}^{-}} {{\mathit \mu}^{+}} {{\mathit \mu}^{+}})}$ $/$ $\Gamma\mathrm {(total)}$ $<7.0\times 10^{-4}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit G}{(1800)}} \rightarrow {{\mathit K}^{0}}2 {{\mathit \pi}^{0}})}$ $/$ $\Gamma\mathrm {(total)}$ [2] $(10.0\pm{1.0})\%$
 
[1] Derived from an analysis of neutrino-oscillation experiments.
[2] This is the second best.