PARAMETERS FOR ${{\mathit K}_S^0}$ $\rightarrow$ 3 ${{\mathit \pi}}$ DECAY

Im($\eta _{+−0}$) = Im(A( ${{\mathit K}_S^0}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit \pi}^{0}}$, $\mathit CP$-violating) $/$ A( ${{\mathit K}_L^0}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit \pi}^{0}}$))

INSPIRE   PDGID:
S012E+
VALUE EVTS DOCUMENT ID TECN  COMMENT
$-0.002$ $\pm0.009$ ${}^{+0.002}_{-0.001}$ 500k 1
ADLER
1997B
CPLR
• • We do not use the following data for averages, fits, limits, etc. • •
$-0.002$ $\pm0.018$ $\pm0.003$ 137k 2
ADLER
1996D
CPLR Sup. by ADLER 1997B
$-0.015$ $\pm0.017$ $\pm0.025$ 272k 3
ZOU
1994
SPEC
1  ADLER 1997B also find Re($\eta _{+−0}$) = $-0.002$ $\pm0.007$ ${}^{+0.004}_{-0.001}$. See also ANGELOPOULOS 1998C.
2  The ADLER 1996D fit also yields Re($\eta _{+−0}$) = $0.006$ $\pm0.013$ $\pm0.001$ with a correlation $+0.66$ between real and imaginary parts. Their results correspond to $\vert \eta _{+−0}\vert <0.037$ with 90$\%$ CL.
3  ZOU 1994 use theoretical constraint Re($\eta _{+−0}$) = Re($\epsilon $) = $0.0016$. Without this constraint they find Im($\eta _{+−0}$) = $0.019$ $\pm0.061$ and Re($\eta _{+−0}$) = $0.019$ $\pm0.027$.
Conservation Laws:
$\mathit CP$ INVARIANCE
References