${{\mathit D}^{\pm}}$ $\mathit CP$-VIOLATING DECAY-RATE ASYMMETRIES

This is the difference between ${{\mathit D}^{+}}$ and ${{\mathit D}^{-}}$ partial widths for the decay to state ${{\mathit f}}$, divided by the sum of the widths:$
$ $\mathit A_{CP}({{\mathit f}}$)= [$\Gamma $( ${{\mathit D}^{+}}$ $\rightarrow$ ${{\mathit f}}$) $−$ $\Gamma $( ${{\mathit D}^{-}}$ $\rightarrow$ ${{\overline{\mathit f}}})]/[\Gamma $( ${{\mathit D}^{+}}$ $\rightarrow$ ${{\mathit f}}$) + $\Gamma $( ${{\mathit D}^{-}}$ $\rightarrow$ ${{\overline{\mathit f}}}$)].

$\mathit A_{\mathit CP}({{\mathit a}_{{{0}}}{(1450)}^{0}}{{\mathit \pi}^{\pm}}$) in ${{\mathit D}^{\pm}}$ $\rightarrow$ ${{\mathit a}_{{{0}}}{(1450)}^{0}}{{\mathit \pi}^{\pm}}$

INSPIRE   PDGID:
S031A09
VALUE (%) DOCUMENT ID TECN  COMMENT
$-19$ $\pm12$ ${}^{+8}_{-11}$
RUBIN
2008
CLEO Fit-fraction asymmetry
Conservation Laws:
$\mathit CP$ INVARIANCE
References