${{\mathit D}^{0}}$ $\mathit CP$-VIOLATING DECAY-RATE ASYMMETRIES

This is the difference between ${{\mathit D}^{0}}$ and ${{\overline{\mathit D}}^{0}}$ partial widths for the decay to state ${{\mathit f}}$, divided by the sum of the widths:$
$ $\mathit A_{CP}({{\mathit f}}$) = [$\Gamma $( ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit f}}$) $−$ $\Gamma $( ${{\overline{\mathit D}}^{0}}$ $\rightarrow$ ${{\overline{\mathit f}}}$)] $/$ [$\Gamma $( ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit f}}$) + $\Gamma $( ${{\overline{\mathit D}}^{0}}$ $\rightarrow$ ${{\overline{\mathit f}}}$)].

$\mathit A_{\mathit CP}({{\mathit K}^{+}}{{\mathit K}^{-}}$) in ${{\mathit D}^{0}}$, ${{\overline{\mathit D}}^{0}}$ $\rightarrow$ ${{\mathit K}^{+}}{{\mathit K}^{-}}$

INSPIRE   PDGID:
S032A1
VALUE ($ 10^{-4} $) EVTS DOCUMENT ID TECN  COMMENT
$\bf{ 4 \pm5}$ OUR AVERAGE
$6.8$ $\pm5.4$ $\pm1.6$ 37M 1
AAIJ
2023AC
LHCB ${{\mathit p}}{{\mathit p}}$ at 13 TeV
$4$ $\pm12$ $\pm10$ 4.56M
AAIJ
2017M
LHCB ${{\mathit p}}{{\mathit p}}$ 7, 8 TeV
$-24$ $\pm22$ $\pm9$ 476k 2
AALTONEN
2012B
CDF ${{\mathit p}}{{\overline{\mathit p}}}$, $\sqrt {s }$=1.96 TeV
$0$ $\pm34$ $\pm13$ 129k 3
AUBERT
2008M
BABR ${{\mathit e}^{+}}{{\mathit e}^{-}}$ $\approx{}$ 10.6 GeV
$-43$ $\pm30$ $\pm11$ 120k 4
STARIC
2008
BELL ${{\mathit e}^{+}}{{\mathit e}^{-}}$ $\approx{}{{\mathit \Upsilon}{(4S)}}$
$+200$ $\pm120$ $\pm60$ 5
ACOSTA
2005C
CDF ${{\mathit p}}{{\overline{\mathit p}}}$, $\sqrt {s }$=1.96 TeV
$0$ $\pm220$ $\pm80$ 3023 5
CSORNA
2002
CLE2 ${{\mathit e}^{+}}{{\mathit e}^{-}}$ $\approx{}{{\mathit \Upsilon}{(4S)}}$
$-10$ $\pm220$ $\pm150$ 3330 5
LINK
2000B
FOCS
$-100$ $\pm490$ $\pm120$ 609 5
AITALA
1998C
E791 $-0.093<\mathit A_{\mathit CP}<+0.073$ (90$\%$ CL)
• • We do not use the following data for averages, fits, limits, etc. • •
$-6$ $\pm15$ $\pm10$ 1.8M 2
AAIJ
2014AK
LHCB See AAIJ 2017M
1  AAIJ 2023AC result comes from 5.7 fb${}^{-1}$ of data. Also reports the values of the direct $\mathit CP$ asymmetries, ${{\mathit a}}{}^{CP}_{{{\mathit \pi}} {{\mathit \pi}}}$ = ($23.2$ $\pm6.1$) $ \times 10^{-4}$ and ${{\mathit a}}{}^{CP}_{KK}$ = ($7.7$ $\pm5.7$) $ \times 10^{-4}$, with a correlation of 88$\%$, obtained using previous determinations of $\mathit A_{CP}({{\mathit K}}{{\mathit K}}$), ${{\mathit \Delta}}\mathit A_{CP}$, ${{\mathit \Delta}}{{\mathit Y}}$, the reconstructed mean decay times of ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit \pi}}{{\mathit \pi}}$ and ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}}{{\mathit K}}$ in the aforementioned measurements, and the world average of the ${{\mathit D}^{0}}$ lifetime (PDG 2022).
2  See also "${{\mathit D}^{0}}$ $\mathit CP$-violating asymmetry differences" at the end of the $\mathit CP$-violating asymmetries.
3  AUBERT 2008M uses corrected numbers of events directly, not ratios with ${{\mathit K}^{\mp}}{{\mathit \pi}^{\pm}}$ events.
4  STARIC 2008 uses ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}^{-}}{{\mathit \pi}^{+}}$ and ${{\overline{\mathit D}}^{0}}$ $\rightarrow$ ${{\mathit K}^{+}}{{\mathit \pi}^{-}}$ decays to correct for detector-induced asymmetries.
5  AITALA 1998C, LINK 2000B, CSORNA 2002, and ACOSTA 2005C measure $\mathit N$( ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}^{+}}{{\mathit K}^{-}})/\mathit N$( ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}^{-}}{{\mathit \pi}^{+}}$), the ratio of numbers of events observed, and similarly for the ${{\overline{\mathit D}}^{0}}$.
Conservation Laws:
$\mathit CP$ INVARIANCE
References